
1

1

Dynamic Memory Allocation (cont.) and
Exceptions

CSCI 237: Computer Organization
34th Lecture, Wednesday, December 4, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Read CSAPP 9.9, 8.1-8.2
¢ Quiz open today at 2:30 until Friday at 2:30pm
¢ Lab #6 due Friday at 5pm
¢ Review session on Sun or Tues?
§ https://www.when2meet.com/?27868617-GeNrF

¢ Final exam
§ Wednesday, December 11, 9:30am – 11:30am (2 hours)
§ Clark Hall 105

¢ Colloquium talk on Friday at 2:35pm in Wege
§ “Systems research to address societal problems”
§ Aruna Balasubramanian, Stony Brook University

2

3

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Tracking Free Blocks

§ Implicit Lists
§ Explicit Lists
§ Segregated Lists

¢Exceptional Control Flow
¢Exceptions

3
4

Optimization: No Boundary Tag for Allocated
Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

¢ Boundary tag is only needed for free blocks
¢ Insight: when sizes are multiples of 4 or more, have 2+ spare bits

4

2

5

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

5
6

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

6

7

m1 ?0

m1 ?0

n 01

m2 11

n+m1 ?0

n+m1 ?0

m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

7
8

No Boundary Tag for Allocated Blocks
(Case 4)

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

8

3

9

Summary of Key Allocator Policies
¢ Placement policy:
§ First-fit, next-fit, best-fit, etc.
§ Trades off lower throughput for less fragmentation
§ Interesting observation: segregated free lists approximate a best fit

placement policy without having to search entire free list

¢ Splitting policy:
§ When do we go ahead and split free blocks?
§ How much internal fragmentation are we willing to tolerate?

¢ Coalescing policy:
§ Immediate coalescing: coalesce each time free is called
§ Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
§ Coalesce as you scan the free list for malloc
§ Coalesce when the amount of external fragmentation reaches some

threshold

9
10

Implicit Lists: Summary
¢ Implementation: very simple
¢ Allocate cost:
§ linear time worst case

¢ Free cost:
§ constant time worst case
§ even with coalescing

¢ Memory usage:
§ will depend on placement policy
§ First-fit, next-fit or best-fit

¢ Not used in practice for malloc/free because of linear-time
allocation
§ used in many special purpose applications

¢ However, the concepts of splitting and boundary tag coalescing
are general to all allocators

10

11

Practice on Your Own
Consider a system where
• The memory is byte addressable.
• Memory accesses are to 1-byte words
• Virtual addresses are 16 bits wide.
• Physical addresses are 14 bits wide.
• The page size is 1024 bytes = 210

• The TLB is 4-way set associative with 16 total entries

For the following virtual addresses, fill out the table above
• 0x76BD
• 0x57EB

Parameter Value

VPN 0x

TLB Index 0x

TLB Tag 0x

TLB Hit?
(Y/N)
Page Fault?
(Y/N)
PPN 0x

PA

11
12

12

4

13

Practice on Your Own

¢ Assuming double-word alignment is used and the implicit free
list format discussed in slides is used (i.e., 4 byte header). Block
sizes are rounded up to nearest multiple of 8 bytes to maintain
alignment.

¢ What would the block size be in bytes (including payload,
header, and padding)? What would be stored in the block
header (in hex)?
§ malloc(2)
§ malloc(9)
§ malloc(16)

13
14

Practice on Your Own

¢ When using implicit lists that only have a header, what is the
smallest size of an allocated block (assuming double word
alignment)?

¢ When using implicit lists that use headers and footers in all
blocks, what is the smallest size of an allocated block (assuming
double word alignment)?

¢ When using implicit lists that use headers in all blocks but
footers only in free blocks, what is the smallest size of an
allocated block (assuming double word alignment)?

14

15

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Tracking Free Blocks

§ Implicit Lists
§ Explicit Lists
§ Segregated Lists

¢ Exceptional Control Flow
¢ Exceptions

15
16

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit free list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each free

block, and the length used as a key

5 4 26

5 4 26

16

5

17

Explicit Free Lists

¢ Maintain list(s) of free blocks, not all blocks
§ The “next” free block could be physically anywhere (not necessarily

adjacent block)
§ So we need to store forward/back pointers, not just sizes

§ Still need boundary tags (but only in free blocks!) for coalescing
§ Luckily we track only free blocks, so we can use payload area for pointers

Size

Payload and
padding

pa Size pa

Size pa

Next

Prev

Allocated (same as implicit lists) Free

p=prev block allocated?
a=is this block allocated?

17
18

Explicit Free Lists
¢ Logically:

¢ Physically: blocks can be in any order

A B C

4 4 4 66 44 4

Forward (next) links

Back (prev) links

A B

C

18

19

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

19
20

Splitting Tasks

¢ Suppose we split a free block B into two: block A, and block F:
§ Allocated block A needs to be updated and removed from the list
§ Free block B needs to be updated so F is kept in the list

¢ sizeAndTags for both A and F needs to be adjusted
§ Shrink A to its allocation size
§ Create a sizeAndTags field in F to reflect new block’s size (B – A)

¢ The next/previous pointers from A need to be added to F
¢ The next/previous blocks need their previous/next pointers to

be updated to point to F
¢ Useful macros:
§ #define UNSCALED_POINTER_ADD(p,x) ((void*)((char*)(p) + (x)))
§ #define UNSCALED_POINTER_SUB(p,x) ((void*)((char*)(p) - (x)))

20

6

21

Freeing With Explicit Free Lists
¢ Insertion policy: Where in the free list do you put a newly freed

block?

¢ LIFO (last-in-first-out) policy
§ Insert freed block at the beginning of the free list
§ Pro: simple and constant time
§ Con: studies suggest fragmentation is worse than address ordered

¢ Address-ordered policy
§ Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)
§ Con: requires search
§ Pro: studies suggest fragmentation is lower than LIFO

21
22

Freeing With a LIFO Policy (Case 1)

¢ Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

22

23

Root

After

Freeing With a LIFO Policy (Case 2)

¢ Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

free()

Root

Before
conceptual graphic

23
24

Freeing With a LIFO Policy (Case 3)

¢ Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

24

7

25

Freeing With a LIFO Policy (Case 4)

¢ Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

25
26

Explicit List Summary
¢ Comparison to implicit list:
§ Allocate is linear time in number of free blocks instead of all blocks

§ Much faster when most of the memory is full
§ Slightly more complicated allocate and free procedures since we need to

splice blocks in and out of the list
§ Need some extra space for the links (2 extra words needed for each block)

§ Does this increase internal fragmentation? (maybe!)

¢ One of most common uses of linked lists is in conjunction with
segregated free lists (up next)
§ Keep multiple linked lists of different size classes, or possibly for different

types of objects

26

27

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Tracking Free Blocks

§ Implicit Lists
§ Explicit Lists
§ Segregated Lists

¢ Exceptional Control Flow
¢ Exceptions

27
28

Keeping Track of Free Blocks

5 4 26

5 4 26

¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different (explicit) free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

28

8

29

Segregated List (Seglist) Allocators
¢ Each size class of blocks has its own free list

¢ Often have separate classes for each small size
¢ For larger sizes: One class for each power-of-two size

1-2

3

4

5-8

9-inf

29
30

Seglist Allocator
¢ Given an array of free lists, each one for some size class

¢ To allocate a block of size n:
§ Search appropriate free list for block of size m >= n
§ If an appropriate block is found:

§ Split block and place fragment on appropriate list (optional)
§ If no block is found, try next larger class
§ Repeat until block is found

¢ If no block is found:
§ Request additional heap memory from OS (using sbrk())
§ Allocate block of n bytes from this new memory
§ Place remainder as a single free block in largest size class.

30

31

Seglist Allocator (cont.)
¢ To free a block:
§ Coalesce and place on appropriate list

¢ Advantages of seglist allocators
§ Higher throughput
§ Better memory utilization

§ First-fit search of segregated free list approximates a best-
fit search of entire heap.

§ Extreme case: Giving each block its own size class is
equivalent to best-fit.

¢ Seglist is used by GNU malloc provided in C std library

31
32

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Tracking Free Blocks

§ Implicit Lists
§ Explicit Lists
§ Segregated Lists

¢Exceptional Control Flow
¢Exceptions

32

9

33

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

¢ Processors do only one thing:
§ From startup to shutdown, a CPU simply reads and executes (interprets)

a sequence of instructions, one at a time
§ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

33
34

Altering the Control Flow
¢ Two mechanisms for changing control flow:
§ Jumps and branches
§ Call and return
React to changes in program state

¢ Insufficient for a useful system:
Difficult to react to changes in system state
§ Data arrives from a disk or a network adapter
§ Instruction divides by zero
§ User hits Ctrl-C at the keyboard
§ System timer expires

¢ System needs mechanisms for “exceptional control flow”

34

35

Exceptional Control Flow
¢ Exists at all levels of a computer system
¢ Low level mechanisms
§ 1. Exceptions

§ Change in control flow in response to a system event
(i.e., change in system state)

§ Implemented using combination of hardware and OS software

¢ Higher level mechanisms
§ 2. Process context switch

§ Implemented by OS software and hardware timer
§ 3. Signals

§ Implemented by OS software
§ 4. Nonlocal jumps: setjmp() and longjmp()

§ Implemented by C runtime library

35

