
1

1

Dynamic Memory Allocation

CSCI 237: Computer Organization
33rd Lecture, Monday, November 25, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Read CSAPP 9.9
¢ Lab #6 due 12/6 at 5pm
¢ No quiz this week
¢ Meet in Ward lab (TBL 301) on Monday 12/2 at 10am

2

3

Last Time

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)

3
4

Today: Dynamic Memory Allocation

¢ Dynamic Memory Allocation (Ch 9.9)
§ Basic concepts

§ Fragmentation
– Internal (fragmentation)
– External (free space fragmentation)

§ Performance
§ How to Measures “allocator” performance?

– Throughput
– (Peak) Utilization

4

2

5

Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

¢Performance Goals:
§ 1) Maximize throughput
§ 2) Maximize peak memory utilization

¢These goals are often conflicting!

5
6

Fragmentation

¢ Poor memory utilization often caused by fragmentation
¢ Two classes:
§ internal fragmentation
§ external fragmentation

6

7

Internal Fragmentation
¢ For a given block, internal fragmentation occurs if payload is smaller

than block size

¢ Caused by
§ Overhead of maintaining heap data structures
§ Padding for alignment purposes
§ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

¢ Depends only on the pattern of previous requests
§ Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

7
8

External Fragmentation

¢ Occurs when there is enough aggregate heap memory, but no
single free block is large enough

¢ Depends on the pattern of future requests
§ Thus, difficult to measure

p4 = malloc(7*SIZ) Oops! (what would happen now?)

#define SIZ sizeof(int)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

8

3

9

Implementation Issues

¢ How do we know how much memory to free(void *) given just a
pointer?

¢ How do we keep track of the free blocks?

¢ What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in?

¢ How do we pick a block to use for allocation -- many might fit?

¢ How do we reinsert freed blocks to our pool of available data?

9
10

Knowing How Much to Free

¢ Standard method
§ Keep the length of a block in the word preceding the block.

§ This word is often called the header field or header
§ Downside: this method requires an extra word for every allocated block

p0 = malloc(4*SIZ)

p0

free(p0)

block size Payload

5

10

11

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g., Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
4 6 4 2

4 6 4 2

11
12

Method 1: Implicit Free List (Ch 9.9.6)
¢ For each block we need both size and allocation status
§ We could store this information in two words, but that is wasteful!

¢ Standard trick
§ When blocks are aligned, some (3) low-order address bits are always 0
§ Instead of storing an always-0 bit, repurpose it as an allocated/free flag
§ When reading the Size word, we just mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

12

4

13

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

2/0 4/1 4/18/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Note: both allocated and free blocks are all in the same implicit list

13
14

Implicit List: Finding a Free Block (9.9.7)
¢ First fit:

§ Search list from beginning, choose first free block that fits:

§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list – fragmentation!

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

¢ Best fit:
§ Search the list, choose the best free block (i.e., fits with the fewest bytes left over)
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

14

15

Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting
§ Since allocated space might be smaller than free space, we might want to

split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask (zero) out lowest bit
*p = newsize | 1; // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

15
16

Implicit List: Freeing a Block
¢ Simplest implementation:
§ Need only clear the “allocated” flag

void free_block(ptr p) { *p = *p & -2 }

§ But can lead to “false fragmentation”

4 2 244

free(p) p

4 4 24 2

malloc(5*SIZ) Oops!

There is enough contiguous free space,
but the allocator won’t be able to find it

0

0

16

5

17

Implicit List: Coalescing
¢ Join (coalesce) with next/previous blocks, if they are free
§ Coalescing with next block

§ But how do we coalesce with previous block?

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

0

0

17
18

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

0 0

18

19

Constant Time Coalescing with Boundary Tags

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Given a block to free and its two neighbors, there are 4 unique combinations of
free/allocated to consider. Let’s look at each case individually

19
20

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

The block’s immediate neighbors are both allocated.

20

6

21

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

The block’s predecessor is allocated, but its successor is free.

21
22

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

The block’s predecessor is free, but it’s successor is allocated.

22

23

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

The block’s immediate neighbors are both free.

23
24

Disadvantages of Boundary Tags

¢ Internal fragmentation
§ Extra non-payload bytes needed for boundary tag/footer

¢ Can it be optimized?
§ Which blocks need the footer tag?
§ What does that mean?

24

7

25

Disadvantages of Boundary Tags

¢ Internal fragmentation
§ Extra non-payload bytes needed for boundary tag/footer

¢ Can it be optimized?
§ Which blocks need the footer tag? Only free blocks!
§ What does that mean? Can save space!

25
26

Optimization: No Boundary Tag for Allocated
Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

¢ Boundary tag is only needed for free blocks
¢ Insight: when sizes are multiples of 4 or more, have 2+ spare bits

26

27

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

27

