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Virtual Memory

CSCI 237: Computer Organization
32nd Lecture, Friday, November 22, 2024 

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition
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Administrative Details

¢ Read CSAPP 9.9
¢ Glow quiz due today at 2:30pm
¢ Lab #6 due Friday, Dec. 6, at 5pm
¢ Watch video online before Monday
¢ Colloquium talk on Friday at 2:35pm in Wege

§ Jeremy Fineman, Georgetown
§ ” Beating Bellman-Ford: Faster Single-Source Shortest Paths with Negative 

Weights”
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Last Time: Virtual Memory 

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
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Today 

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)
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Linear Page Table is HUGE and Sparse!

¢ Linear Page Tables
§ (# of virtual pages) * (size of PTE)
§ Would need to be placed in contiguous physical addresses in DRAM
§ But much of virtual address space is unallocated

§ E.g.) area from top of stack to top of heap

¢ Use a hierarchical data structure / tree instead
§ We don’t have to create PTEs for unallocated virtual pages 
§ We can have single top level page (root) in DRAM, with other pages being 

demand paged as needed
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Multi-Level Page Tables: Concrete Example
¢ Suppose:

§ 4KB (212) page size, 48-bit address space, 8-byte PTE 

¢ Problem?
§ Would need a 512 GB page table!

§ 248 / 212 = 236 = # entries in page table
§ 23 bytes per entry
§ 248 * 2-12  * 23 = 239 bytes in every page table

¢ Common solution: Multi-level page tables
§ No need to waste space for unallocated pages!

¢ Example: 2-level page table
§ Level 1 table: each PTE points to a page table (always 

memory resident)
§ Level 2 table: each PTE points to a page 

(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs
(232 = 4GB = 1024 x 4MB)

Each PTE 
maps a 

4MB
chunk of 

VAS

Each PTE 
maps a 4KB

chunk of 
VAS
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Translating with a k-level Page Table

Page table 
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

TLB caches 
PTEs from all 

levels
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Address Translation Summary (Ch 9.6)

¢ Programmer’s view of virtual memory:
§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

¢ System’s view of virtual memory:
§ Uses memory efficiently by caching virtual memory pages

§ Efficient only because of locality
§ Simplifies memory management and programming
§ Simplifies protection by providing a convenient inter-

positioning point to check permissions
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Today 

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)
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Review of Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in 
virtual address space

§ M = 2m : Number of addresses in 
physical address space

§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset 
§ VPN: Virtual page number 

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
§ CO: Byte offset within cache line
§ CI: Cache index
§ CT: Cache tag

(bits per field for our simple example)
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Simple Memory System Example
¢ Addressing Parameters
§ Page size = 64 bytes
§ 14-bit virtual addresses
§ 12-bit physical address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
Physical Page Number Physical Page Offset

¢ TLB Parameters
§ 4 Sets
§ 4-way

TLBITLBT
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Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Translation Lookaside Buffer (TLB)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

TLB
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Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example Cache

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F
D31B7783113E

15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

¢ 16 lines, 4-byte block size, direct mapped
¢ Physically addressed

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

0001010 11010Physical Address
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Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

Block ___ Set___ Tag ____ Hit? __              Value: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BlockSetTag

0001010 11010

0 0x5 0x0D

Cache

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F
D31B7783113E

15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248

B3B2B1B0ValidTagIdx
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Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

Block ___ Set___ Tag ____ Hit? __              Value: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BlockSetTag

0001010 11010

03DFC2111167

––––0316
1DF0723610D5

098F6D431324

––––0363
0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F

D31B7783113E
15349604116D

––––012C

––––00BB
3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

Cache

0 0x5 0x0D Y
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Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

Block ___ Set___ Tag ____ Hit? __              Value: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BlockSetTag

0001010 11010

03DFC2111167

––––0316
1DF0723610D5

098F6D431324

––––0363
0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F

D31B7783113E
15349604116D

––––012C

––––00BB
3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

Cache

0 0x5 0x0D Y 0x36
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Practice on Your Own

The following problem concerns the way virtual addresses are 
translated into physical addresses. 
¢ The memory is byte addressable. 
¢ Memory accesses are to 1-byte words (not 4-byte words). 
¢ Virtual addresses are 16 bits wide. 
¢ Physical addresses are 14 bits wide. 
¢ The page size is 1024 bytes = 210 

¢ The TLB is 4-way set associative with 16 total entries. 
¢ For the virtual address 0x76BD, what is the 

§ VPN
§ VPO
§ TLB Index
§ TLB Tag
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Today 

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)
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Dynamic Memory Allocation

¢ Programmers use dynamic 
memory allocators (such as 
malloc) to acquire VM at 
run time. 
§ For data structures whose size is 

only known at runtime.

¢ Dynamic memory allocators 
manage an area of process 
virtual memory known as the 
heap. 

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap
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Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free.

¢ Types of allocators
§ Explicit allocator:  application allocates and frees space 

§ e.g.,  malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ e.g., garbage collection in Java, ML, and Lisp

¢ Will discuss simple explicit memory allocation today 
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The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to an 16-byte boundary (on x86-64)
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero. 
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap
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malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
    p = (int *) malloc(n * sizeof(int));
    if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i = 0; i < n; i++)

p[i] = i;

/* Return allocated block to the heap */
    free(p);
}
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Simplifying Assumptions Made in This Lecture

¢ Memory is word addressed.
¢ Words are int-sized (4 bytes).

§ Each box is a 4 byte word.

¢ Allocations are double-word (8 byte) aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word
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Allocation Example

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(int)
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Constraints
¢ Applications

§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 16-byte (x86-64) alignment on Linux machines
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed
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Evaluating a Memory Allocator

¢ What does it mean for an allocator to be good?
§ How do we measure the “performance” of an allocator?
§ How do we measure “quality” of the allocations?

¢ As we talk about designs, think about the best and worst cases
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Performance Goals: Throughput

¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000  malloc calls and 5,000 free calls in 10 seconds 
§ Throughput is 1,000 operations/second
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Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is 

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests 
§ Uk = ( maxi≤k Pi )  /  Hk
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Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is 

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests 
§ Uk = ( maxi≤k Pi )  /  Hk

¢Performance Goals: 
§ 1) Maximize throughput 
§ 2) Maximize peak memory utilization

¢These goals are often conflicting!


