
1

Virtual Memory

CSCI 237: Computer Organization
32nd Lecture, Friday, November 22, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ Read CSAPP 9.9
¢ Glow quiz due today at 2:30pm
¢ Lab #6 due Friday, Dec. 6, at 5pm
¢ Watch video online before Monday
¢ Colloquium talk on Friday at 2:35pm in Wege

§ Jeremy Fineman, Georgetown
§ ” Beating Bellman-Ford: Faster Single-Source Shortest Paths with Negative

Weights”

3

Last Time: Virtual Memory

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system

4

Today

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)

5

Linear Page Table is HUGE and Sparse!

¢ Linear Page Tables
§ (# of virtual pages) * (size of PTE)
§ Would need to be placed in contiguous physical addresses in DRAM
§ But much of virtual address space is unallocated

§ E.g.) area from top of stack to top of heap

¢ Use a hierarchical data structure / tree instead
§ We don’t have to create PTEs for unallocated virtual pages
§ We can have single top level page (root) in DRAM, with other pages being

demand paged as needed

6

Multi-Level Page Tables: Concrete Example
¢ Suppose:

§ 4KB (212) page size, 48-bit address space, 8-byte PTE

¢ Problem?
§ Would need a 512 GB page table!

§ 248 / 212 = 236 = # entries in page table
§ 23 bytes per entry
§ 248 * 2-12 * 23 = 239 bytes in every page table

¢ Common solution: Multi-level page tables
§ No need to waste space for unallocated pages!

¢ Example: 2-level page table
§ Level 1 table: each PTE points to a page table (always

memory resident)
§ Level 2 table: each PTE points to a page

(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...

7

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs
(232 = 4GB = 1024 x 4MB)

Each PTE
maps a

4MB
chunk of

VAS

Each PTE
maps a 4KB

chunk of
VAS

8

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

TLB caches
PTEs from all

levels

9

Address Translation Summary (Ch 9.6)

¢ Programmer’s view of virtual memory:
§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

¢ System’s view of virtual memory:
§ Uses memory efficiently by caching virtual memory pages

§ Efficient only because of locality
§ Simplifies memory management and programming
§ Simplifies protection by providing a convenient inter-

positioning point to check permissions

10

Today

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)

11

Review of Symbols
¢ Basic Parameters

§ N = 2n : Number of addresses in
virtual address space

§ M = 2m : Number of addresses in
physical address space

§ P = 2p : Page size (bytes)

¢ Components of the virtual address (VA)
§ TLBI: TLB index
§ TLBT: TLB tag
§ VPO: Virtual page offset
§ VPN: Virtual page number

¢ Components of the physical address (PA)
§ PPO: Physical page offset (same as VPO)
§ PPN: Physical page number
§ CO: Byte offset within cache line
§ CI: Cache index
§ CT: Cache tag

(bits per field for our simple example)

12

Simple Memory System Example
¢ Addressing Parameters
§ Page size = 64 bytes
§ 14-bit virtual addresses
§ 12-bit physical address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
Physical Page Number Physical Page Offset

¢ TLB Parameters
§ 4 Sets
§ 4-way

TLBITLBT

13

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Translation Lookaside Buffer (TLB)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

TLB

14

Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example Cache

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F
D31B7783113E

15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

¢ 16 lines, 4-byte block size, direct mapped
¢ Physically addressed

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

0001010 11010Physical Address

15

Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Block ___ Set___ Tag ____ Hit? __ Value: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BlockSetTag

0001010 11010

0 0x5 0x0D

Cache

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F
D31B7783113E

15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

16

Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Block ___ Set___ Tag ____ Hit? __ Value: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BlockSetTag

0001010 11010

03DFC2111167

––––0316
1DF0723610D5

098F6D431324

––––0363
0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F

D31B7783113E
15349604116D

––––012C

––––00BB
3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

Cache

0 0x5 0x0D Y

17

Translation Lookaside Buffer (TLB)

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Block ___ Set___ Tag ____ Hit? __ Value: ____

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BlockSetTag

0001010 11010

03DFC2111167

––––0316
1DF0723610D5

098F6D431324

––––0363
0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F

D31B7783113E
15349604116D

––––012C

––––00BB
3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

Cache

0 0x5 0x0D Y 0x36

18

Practice on Your Own

The following problem concerns the way virtual addresses are
translated into physical addresses.
¢ The memory is byte addressable.
¢ Memory accesses are to 1-byte words (not 4-byte words).
¢ Virtual addresses are 16 bits wide.
¢ Physical addresses are 14 bits wide.
¢ The page size is 1024 bytes = 210

¢ The TLB is 4-way set associative with 16 total entries.
¢ For the virtual address 0x76BD, what is the

§ VPN
§ VPO
§ TLB Index
§ TLB Tag

19

Today

¢ Address translation (Ch 9.6)
¢ End-to-end example of a simple memory system
¢ Dynamic Memory Allocation (Ch 9.9)

20

Dynamic Memory Allocation

¢ Programmers use dynamic
memory allocators (such as
malloc) to acquire VM at
run time.
§ For data structures whose size is

only known at runtime.

¢ Dynamic memory allocators
manage an area of process
virtual memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
(brk ptr)

Application

Dynamic Memory Allocator

Heap

21

Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free.

¢ Types of allocators
§ Explicit allocator: application allocates and frees space

§ e.g., malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ e.g., garbage collection in Java, ML, and Lisp

¢ Will discuss simple explicit memory allocation today

22

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to an 16-byte boundary (on x86-64)
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero.
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap

23

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i = 0; i < n; i++)

p[i] = i;

/* Return allocated block to the heap */
 free(p);
}

24

Simplifying Assumptions Made in This Lecture

¢ Memory is word addressed.
¢ Words are int-sized (4 bytes).

§ Each box is a 4 byte word.

¢ Allocations are double-word (8 byte) aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

25

Allocation Example

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(int)

26

Constraints
¢ Applications

§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 16-byte (x86-64) alignment on Linux machines
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed

27

Evaluating a Memory Allocator

¢ What does it mean for an allocator to be good?
§ How do we measure the “performance” of an allocator?
§ How do we measure “quality” of the allocations?

¢ As we talk about designs, think about the best and worst cases

28

Performance Goals: Throughput

¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000 malloc calls and 5,000 free calls in 10 seconds
§ Throughput is 1,000 operations/second

29

Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

30

Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

¢Performance Goals:
§ 1) Maximize throughput
§ 2) Maximize peak memory utilization

¢These goals are often conflicting!

