Virtual Memory

CSCI 237: Computer Organization
32" Lecture, Friday, November 22, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

Administrative Details

= Read CSAPP 9.9

= Glow quiz due today at 2:30pm

m Lab #6 due Friday, Dec. 6, at 5pm

m Watch video online before Monday

m Colloquium talk on Friday at 2:35pm in Wege

= Jeremy Fineman, Georgetown

= ” Beating Bellman-Ford: Faster Single-Source Shortest Paths with Negative
Weights”

Last Time: Virtual Memory

m Address translation (Ch 9.6)
m End-to-end example of a simple memory system

Today

m Address translation (Ch 9.6)
m End-to-end example of a simple memory system
m Dynamic Memory Allocation (Ch 9.9)

Linear Page Table is HUGE and Sparse!

m Linear Page Tables
= (# of virtual pages) * (size of PTE)
" Would need to be placed in contiguous physical addresses in DRAM
® But much of virtual address space is unallocated
= E.g.) area from top of stack to top of heap

m Use a hierarchical data structure / tree instead

" We don’t have to create PTEs for unallocated virtual pages

= We can have single top level page (root) in DRAM, with other pages being
demand paged as needed

Multi-Level Page Tables: Concrete Example

m Suppose: Level 2
= 4KB (21%) page size, 48-bit address space, 8-byte PTE Tables
m Problem?
, |
Would need a 512 GB page table! Level 1
. D4 12 — 936 — i i
248 [212 = 236 = # entries in page table Table ‘
s D3 bytes per entry ;/'

= 248 % 2-12 % 93 = 239 bytes in every page table

m Common solution: Multi-level page tables

* No need to waste space for unallocated pages!

m Example: 2-level page table

= Level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
VPO h
PTE 0 — [ereo
VP 1023 > 2K allocated VM pages
PTE1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null) P 2047
Each PTE J
PTE 4 (null)
maps a Each PTE PTEO N
AMB PTE 5 (null) mahps ak4I;B
chunk of | PTE6 (null) ¢ ;25 © PTE 1023
VAS PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
pages
32 bit addresses, 4KB pages, 4-byte PTEs VP 9215 1 allocated VM page
for the stack

(232 = 4GB = 1024 x 4MB)

Translating with a k-level Page Table

TLB caches
Page table PTEs from all
base register | |
(PTBR) eveis
VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
the Level 1 a Level 2 a Level k {
page table page table page table
—_ > > >
: PPN |} —
m'1 v p'1 v 0
PPN PPO

PHYSICAL ADDRESS

Address Translation Summary (Ch 9.6)

m Programmer’s view of virtual memory:
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System’s view of virtual memory:
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient inter-
positioning point to check permissions

Today

m Address translation (Ch 9.6)
m End-to-end example of a simple memory system
m Dynamic Memory Allocation (Ch 9.9)

10

4 E = 2¢ lines per set
Review of Symbols - > \
I Il o o0 I
Address of word:
m Basic Parameters | I oo ' e
. S=2setsq | I [o 00 | cr d co
" N =2": Number of addresses in tag index offset
virtual address space | reeemeeseeeeeeeeseens |
= M =2": Number of addresses in . . Lo I —
physical address space abeens s ol
= P =2P :Page size (bytes) [v] (e] [o]2]2]-To1]
valid bit! ~—
. B = 2" bytes per cache block (the data)
m Components of the virtual address (VA)
u TLBI TLB indeX «— TIBT ————— <« TLBI —
u TLBT.TLBtag |13‘12|11|10|9|8|7|6|5|4|3|2|1|0‘
= VPO: Virtual page offset
. < VPN > VPO —
" VPN: Virtual page number Virtual Page Number Virtual Page Offset
m Components of the physical address (PA) (bits per field for our simple example)
= PPO: Physical page offset (same as VPO)
" PPN: Physical page number) a a———cw~—

11 10 9 8 7 6 5 4 3 2 1 0

" CO: Byte offset within cache line C T T T T T T T T 7 ol
" ClI: Cache index <« PPN - PPO ———

"= CT: Cache tag Physical Page Number Physical Page Offset

Simple Memory System Example

m Addressing Parameters = TLB Parameters

" Page size = 64 bytes = 4 Sets
= 14-bit virtual addresses = 4-way
= 12-bit physical address

« TLBT ><— TLBI —

13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

v

VPN > VPO
Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

A

v

PPN PPO

Physical Page Number Physical Page Offset
12

Address Translation Example

Virtual Address: 0x03D4

< TLBT =
13 12 11 10 9 8 7 6 5 4 3 2 1 0

O 0|0)| 0|1 1/1,1,0,;10|10

. VPN = VPO -
VPN OxOF TLBI 0x3 TLBT 0x03 TLB Hit? Y Page Fault? N PPN: OxOD
TLB
Set Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid

0 03 - 0 09 oD 1 00 - 0 07 02 1

1 03 2D 1 02 - 0 04 - 0 0A - 0

2 02 - 0 08 - 0 06 - 0 03 - 0

3 07 - 0 03 oD 1 0A 34 1 02 - 0

13

Address Translation Example

Cache

Idx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

m 16 lines, 4-byte block size, direct mapped

m Physically addressed

11 10 7 6 5 4 3 2 1 0

PhysicalAddress [0 | 0 | 1 |1 0|1 0 |1]0]|1 0]0

A
v
v
2
Y
A
v
v
o
v

14

Address Translation Example Cache
Idx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

Physical Address

< Tag > Set — <+ Block >

11 100 9 8 7 6 5 4 3 2 1 0
o, 01,1010, 1,010/ 0

PPN = PPO

A

v

Block 0 SetOx5 Tag OxOD Hit? Value:

15

Address Translation Example Cache
ldx Tag Valid BO B1 B2 B3 Idx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO iD D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

Physical Address

v
A

Set —><+ Block *

< Tag
11 10 9 8 7 6 5 4 3 2 1 0
o 01,1 0|1, 01|01 0/ 0

PPN

A

y
A
v
v
o
v

Block 0 SetOx5 Tag OxOD Hit? Y Value:

16

Address Translation Example Cache
ldx Tag Valid BO B1 B2 B3 Idx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO iD D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -

Physical Address

< Tag > Set — >+ Block *>

11 100 9 8 7 6 5 4 3 2 1 0
o, 01,1010, 1,010/ 0

PPN PPO

A
Y

A

v

Block 0 SetOx5 Tag OxOD Hit? Y Value: 0x36

17

Practice on Your Own

The following problem concerns the way virtual addresses are
translated into physical addresses.

= The memory is byte addressable.

= Memory accesses are to 1-byte words (not 4-byte words).
» Virtual addresses are 16 bits wide.

m Physical addresses are 14 bits wide.

= The page size is 1024 bytes = 210

m The TLB is 4-way set associative with 16 total entries.

m For the virtual address Ox76BD, what is the
= VPN
= VPO
" TLB Index
= TLB Tag

18

Today

m Address translation (Ch 9.6)
m End-to-end example of a simple memory system
m Dynamic Memory Allocation (Ch 9.9)

19

Dynamic Memory Allocation

m Programmers use dynamic Application
memory allocators (such as
malloc)to acquire VM at

Dynamic Memory Allocator

. Heap
run time.
= For data structures whose size is
only known at runtime.
User stack
= Dynamic memory allocators f ' Top of heap

manage an area of process (brk ptr)
virtual memory known as the

heap.

Heap (viamalloc)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

20

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free.
m Types of allocators

= Explicit allocator: application allocates and frees space
= e.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= e.g., garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

21

e
The malloc Package

#include <stdlib.h>

vold *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
aligned to an 16-byte boundary (on x86-64)

» If size == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

volid free(void *p)
= Returns the block pointed at by p to pool of available memory

* p must come from a previous call tomalloc or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.

" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

22

e
malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
P = (int *) malloc(n * sizeof(int));
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (1 = 0; i < n; i++)
pli] = 1i;

/* Return allocated block to the heap */
free(p) ;

23

Simplifying Assumptions Made in This Lecture

= Memory is word addressed.

= Words are int-sized (4 bytes).

* Each box is a 4 byte word.

m Allocations are double-word (8 byte) aligned.

\ J
) 4

Allocated block
(4 words)

H_I

Free block
(2 words)

Free word

Allocated word

24

#define SIZ sizeof (int)

Allocation Example

pl = malloc (4*SIZ)

P2 = malloc (5*SIZ)

p3 = malloc (6*SIZ)
free (p2)

p4 = malloc (2*SIZ)

25

I
Constraints

m Applications
= Can issue arbitrary sequence of malloc and free requests

" free request must betoamalloc’d block

m Allocators

= Can’t control number or size of allocated blocks
* Must respond immediately tomalloc requests

= j.e., can’t reorder or buffer requests

Must allocate blocks from free memory

= j.e., can only place allocated blocks in free memory

* Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on Linux machines

® Can manipulate and modify only free memory

® Can’t move the allocated blocks once they are malloc’d

= j.e., compaction is not allowed
26

Evaluating a Memory Allocator

m What does it mean for an allocator to be good?
* How do we measure the “performance” of an allocator?

* How do we measure “quality” of the allocations?

m As we talk about designs, think about the best and worst cases

27

Performance Goals: Throughput

m Given some sequence of malloc and free requests:
* Ry, Ry oo Ry oo) Ry

m Throughput:
*" Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds

= Throughput is 1,000 operations/second

28

Performance Goals: Peak Memory Utilization

m Given some sequence of malloc and free requests:
* Ry, Ry, ... Ry ..., R,

m Def: Aggregate payload P,
* malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is
the sum of currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
" U= (max4 P;) / Hy

29

Performance Goals: Peak Memory Utilization

m Given some sequence of malloc and free requests:
“ Ry Ry, ..., Ry ..., Rg
m Nof- Anareaante navload D.
m Performance Goals:
= 1) Maximize throughput

= 2) Maximize peak memory utilization

m These goals are often conflicting!

= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
" U= (max4 P;) / Hy

30

