
1

1

Dynamic Memory Allocation

CSCI 237: Computer Organization
32nd Lecture, Friday, November 19, 2025

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Read CSAPP 9.9
¢ Lab #6 due 12/5 at 5pm
¢ TA Feedback Form (posted on Slack)
§ https://forms.gle/mwaWEUy46iHT4MT37

¢ Colloquium talk today at 2:35pm in Wege
§ Alexis Korb
§ Fronters in Modern Cryptography

2

3

Last Time

¢ Address translation (Ch 9.6)

3
4

Today: Dynamic Memory Allocation

¢ Address Translation
¢ Dynamic Memory Allocation (Ch 9.9)
§ Basic concepts

§ Fragmentation
– Internal (fragmentation)
– External (free space fragmentation)

§ Performance
§ How to Measures “allocator” performance?

– Throughput
– (Peak) Utilization

4

2

5

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0
...

VP 1023

VP 1024
...

VP 2047

Gap

0

PTE 0

...
PTE 1023

PTE 0

...
PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1
PTE 2 (null)
PTE 3 (null)

PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack32 bit addresses, 4KB pages, 4-byte PTEs

(232 = 4GB = 1024 x 4MB)

Each PTE
maps a

4MB
chunk of

VAS

Each PTE
maps a 4KB

chunk of
VAS

5
6

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

TLB caches
PTEs from all

levels

6

7

Address Translation Summary (Ch 9.6)

¢ Programmer’s view of virtual memory:
§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

¢ System’s view of virtual memory:
§ Uses memory efficiently by caching virtual memory pages

§ Efficient only because of locality
§ Simplifies memory management and programming
§ Simplifies protection by providing a convenient inter-

positioning point to check permissions

7
8

Today: Dynamic Memory Allocation

¢ Address Translation
¢ Dynamic Memory Allocation (Ch 9.9)
§ Basic concepts

§ Fragmentation
– Internal (fragmentation)
– External (free space fragmentation)

§ Performance
§ How to Measures “allocator” performance?

– Throughput
– (Peak) Utilization

8

3

9

Dynamic Memory Allocation

¢ Programmers use dynamic
memory allocators (such as
malloc) to acquire VM at
run time.
§ For data structures whose size is

only known at runtime.

¢ Dynamic memory allocators
manage an area of process
virtual memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator

Heap

9
10

Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free.

¢ Types of allocators
§ Explicit allocator: application allocates and frees space

§ e.g., malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ e.g., garbage collection in Java, ML, and Lisp

¢ Will discuss simple explicit memory allocation today

10

11

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to an 16-byte boundary (on x86-64)
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero.
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap

11
12

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i = 0; i < n; i++)

p[i] = i;

/* Return allocated block to the heap */
 free(p);
}

12

4

13

Simplifying Assumptions Made in This Lecture

¢ Memory is word addressed.
¢ Words are int-sized (4 bytes).
§ Each box is a 4 byte word.

¢ Allocations are double-word (8 byte) aligned.

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

13
14

Allocation Example

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(int)

14

15

Constraints
¢ Applications
§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 16-byte (x86-64) alignment on Linux machines
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed

15
16

Evaluating a Memory Allocator

¢ What does it mean for an allocator to be good?
§ How do we measure the “performance” of an allocator?
§ How do we measure “quality” of the allocations?

¢ As we talk about designs, think about the best and worst cases

16

5

17

Performance Goals: Throughput

¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000 malloc calls and 5,000 free calls in 10 seconds
§ Throughput is 1,000 operations/second

17
18

Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

18

19

Performance Goals: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

¢Performance Goals:
§ 1) Maximize throughput
§ 2) Maximize peak memory utilization

¢These goals are often conflicting!

19
20

Fragmentation

¢ Poor memory utilization often caused by fragmentation
¢ Two classes:
§ internal fragmentation
§ external fragmentation

20

6

21

Internal Fragmentation
¢ For a given block, internal fragmentation occurs if payload is smaller

than block size

¢ Caused by
§ Overhead of maintaining heap data structures
§ Padding for alignment purposes
§ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

¢ Depends only on the pattern of previous requests
§ Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

21
22

External Fragmentation

¢ Occurs when there is enough aggregate heap memory, but no
single free block is large enough

¢ Depends on the pattern of future requests
§ Thus, difficult to measure

p4 = malloc(7*SIZ) Oops! (what would happen now?)

#define SIZ sizeof(int)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

22

23

Implementation Issues

¢ How do we know how much memory to free(void *) given just a
pointer?

¢ How do we keep track of the free blocks?

¢ What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in?

¢ How do we pick a block to use for allocation -- many might fit?

¢ How do we reinsert freed blocks to our pool of available data?

23
24

Knowing How Much to Free

¢ Standard method
§ Keep the length of a block in the word preceding the block.

§ This word is often called the header field or header
§ Downside: this method requires an extra word for every allocated block

p0 = malloc(4*SIZ)
p0

free(p0)

block size Payload

5

24

7

25

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g., Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
4 6 4 2

4 6 4 2

25
26

Method 1: Implicit Free List (Ch 9.9.6)
¢ For each block we need both size and allocation status
§ We could store this information in two words, but that is wasteful!

¢ Standard trick
§ When blocks are aligned, some (3) low-order address bits are always 0
§ Instead of storing an always-0 bit, repurpose it as an allocated/free flag
§ When reading the Size word, we just mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

26

27

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

2/0 4/1 4/18/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Note: both allocated and free blocks are all in the same implicit list

27
28

Implicit List: Finding a Free Block (9.9.7)
¢ First fit:

§ Search list from beginning, choose first free block that fits:

§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list – fragmentation!

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

¢ Best fit:
§ Search the list, choose the best free block (i.e., fits with the fewest bytes left over)
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

28

8

29

Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting
§ Since allocated space might be smaller than free space, we might want to

split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask (zero) out lowest bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

29
30

Implicit List: Freeing a Block
¢ Simplest implementation:
§ Need only clear the “allocated” flag

 void free_block(ptr p) { *p = *p & -2 }

§ But can lead to “false fragmentation”

4 2 244

free(p) p

4 4 24 2

malloc(5*SIZ) Oops!

There is enough contiguous free space,
but the allocator won’t be able to find it

0

0

30

31

Implicit List: Coalescing
¢ Join (coalesce) with next/previous blocks, if they are free
§ Coalescing with next block

§ But how do we coalesce with previous block?

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

0

0

31
32

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

0 0

32

9

33

Constant Time Coalescing with Boundary Tags

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Given a block to free and its two neighbors, there are 4 unique combinations of
free/allocated to consider. Let’s look at each case individually

33
34

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1

m2 1

m2 1

m1 1

m1 1
n 0

n 0

m2 1

m2 1

The block’s immediate neighbors are both allocated.

34

35

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

The block’s predecessor is allocated, but its successor is free.

35
36

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

The block’s predecessor is free, but it’s successor is allocated.

36

10

37

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

The block’s immediate neighbors are both free.

37
38

Disadvantages of Boundary Tags

¢ Internal fragmentation
§ Extra non-payload bytes needed for boundary tag/footer

¢ Can it be optimized?
§ Which blocks need the footer tag?
§ What does that mean?

38

39

Disadvantages of Boundary Tags
¢ Internal fragmentation
§ Extra non-payload bytes needed for boundary tag/footer

¢ Can it be optimized?
§ Which blocks need the footer tag? Only free blocks!
§ What does that mean? Can save space!

39
40

Optimization: No Boundary Tag for Allocated
Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

¢ Boundary tag is only needed for free blocks
¢ Insight: when sizes are multiples of 4 or more, have 2+ spare bits

40

11

41

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

41
42

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

42

43

m1 ?0

m1 ?0

n 01

m2 11

n+m1 ?0

n+m1 ?0

m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

43
44

No Boundary Tag for Allocated Blocks
(Case 4)

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

44

12

45

Summary of Key Allocator Policies
¢ Placement policy:
§ First-fit, next-fit, best-fit, etc.
§ Trades off lower throughput for less fragmentation
§ Interesting observation: segregated free lists (next lecture) approximate a

best fit placement policy without having to search entire free list

¢ Splitting policy:
§ When do we go ahead and split free blocks?
§ How much internal fragmentation are we willing to tolerate?

¢ Coalescing policy:
§ Immediate coalescing: coalesce each time free is called
§ Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
§ Coalesce as you scan the free list for malloc
§ Coalesce when the amount of external fragmentation reaches some

threshold

45
46

Implicit Lists: Summary
¢ Implementation: very simple
¢ Allocate cost:
§ linear time worst case

¢ Free cost:
§ constant time worst case
§ even with coalescing

¢ Memory usage:
§ will depend on placement policy
§ First-fit, next-fit or best-fit

¢ Not used in practice for malloc/free because of linear-time
allocation
§ used in many special purpose applications

¢ However, the concepts of splitting and boundary tag coalescing
are general to all allocators

46

47

Practice

¢ Assuming double-word alignment is used and the implicit free
list format discussed in slides is used (i.e., 4 byte header). Block
sizes are rounded up to nearest multiple of 8 bytes to maintain
alignment.

¢ What would the block size be in bytes (including payload,
header, and padding)? What would be stored in the block
header (in hex)?
§ malloc(2)
§ malloc(9)
§ malloc(16)

47

