Dynamic Memory Allocation

CSCl 237: Computer Organization
32nd Lecture, Friday, November 19, 2025

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition 1

1

Last Time

m Address translation (Ch 9.6)

|
Administrative Details

= Read CSAPP 9.9

m Lab #6 due 12/5 at 5pm

= TA Feedback Form (posted on Slack)
= https://forms.gle/mwaWEUy46iHTAMT37

m Colloquium talk today at 2:35pm in Wege
= Alexis Korb

® Fronters in Modern Cryptography

Today: Dynamic Memory Allocation

m Address Translation

m Dynamic Memory Allocation (Ch 9.9)
= Basic concepts
= Fragmentation
— Internal (fragmentation)
— External (free space fragmentation)
= Performance
= How to Measures “allocator” performance?
— Throughput
— (Peak) Utilization

e ——
A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
vo |)
o 1—— | PrE0
VP 1023 2K allocated VM pages
PTE1 VP 1023 > for code and data
PTE 2 (null) PTE 1023
PTE 3 (null) v '2';)47
J
E;cahp:T: PTE 4 (null) Each PTE PTEO 3
4MB PTE 5 (null) maps a 4KB
chunk of | PTE6 (null) d‘i‘/;‘; of PTE 1023
VAS PTE 7 (null) Gap > 6K unallocated VM pages
PTE8
1023 null
(1K-9) PTEs)
null PTEs PTE 1023 1023 |
unallocated 1023 unallocated pages
pages
P _ VP 9215 1 allocated VM page
32 bit addresses, 4KB pages, 4-byte PTEs for the stack

(232 = 4GB = 1024 x 4MB)

Address Translation Summary (Ch 9.6)

m Programmer’s view of virtual memory:
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System’s view of virtual memory:
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient inter-
positioning point to check permissions

Translating with a k-level Page Table

TLB caches
Page table PTEs from all
base register | |
(PTBR) evels
VIRTUAL ADDRESS

n-1 p-1 0
l VPN 1 [VPN 2 | | VPN k VPO ‘

the Level 1 alevel 2 alevel k

page table page table page table

=10 =

| PPN [pro |
PHYSICAL ADDRESS

Today: Dynamic Memory Allocation

m Address Translation

m Dynamic Memory Allocation (Ch 9.9)
= Basic concepts
= Fragmentation
— Internal (fragmentation)
— External (free space fragmentation)
= Performance
= How to Measures “allocator” performance?
— Throughput
— (Peak) Utilization

= Programmers use dynamic

Dynamic Memory Allocation

Application

memory allocators (such as
malloc)to acquire VM at

Dynamic Memory Allocator

. Hea
run time. P
® For data structures whose size is
only known at runtime.
User stack
m Dynamic memory allocators f ' Top of heap
manage an area of process [~ (brk ptr)

. Heap (viamalloc)
virtual memory known as the

heap. Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)

The malloc Package

#include <stdlib.h>
void *malloc(size_t size)
= Successful:
= Returns a pointer to a memory block of at least size bytes
aligned to an 16-byte boundary (on x86-64)
= If size == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno
void free(void *p)
= Returns the block pointed at by p to pool of available memory
® p must come from a previous call tomalloc or realloc
Other functions
" calloc: Version of malloc that initializes allocated block to zero.
® realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free.
m Types of allocators
= Explicit allocator: application allocates and frees space
=e.g, mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= e.g., garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

10

11

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */

P = (int *) malloc(n * sizeof(int));
if (p == NULL) {

perror ("malloc") ;

exit(0);

}

/* Initialize allocated block */
for (i = 0; i < n; i++)
plil = i;

/* Return allocated block to the heap */
free(p) ;

12

#define SIZ sizeof (int)

Simplifying Assumptions Made in This Lecture Allocation Example

lMemoryiswordaddressed. pl = malloc (4*SIZ) ‘ | | | | | | | | | | | | | | | | | ‘

m Words are int-sized (4 bytes).
" Each box is a 4 byte word.

p2=malloc(s*stz) [| | [[[T T T [[[]T[]T]]

m Allocations are double-word (8 byte) aligned.

p3=matloc(é*stz) [| | [[[[[[[[[[TT[]]]

— — free (p2) (TTTTTTTTITTITITTTITT T[]
Allocated block Free block
(4 words) (2 words) D Free word
[] Allocated word pd =malloc2*stz) | [[[[[[[[[[[[TTTT[]]
13 14
13 14
I — I —
Constraints Evaluating a Memory Allocator
m Applications
= Can issue arbitrary sequence of malloc and free requests m What does it mean for an allocator to be good?
= free request must be to amalloc’d block ® How do we measure the “performance” of an allocator?
® How do we measure “quality” of the allocations?
m Allocators
= Can’t control number or size of allocated blocks
* Must respond immediately to malloc requests m As we talk about designs, think about the best and worst cases

= i.e., can’t reorder or buffer requests

" Must allocate blocks from free memory
= i.e., can only place allocated blocks in free memory

" Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on Linux machines

® Can manipulate and modify only free memory

" Can’t move the allocated blocks once they are malloc’d

= i.e., compaction is not allowed

15 16

e ——
Performance Goals: Throughput

m Given some sequence of malloc and free requests:
" Ro, Ry, ..., Riy o, Rt

m Throughput:

" Number of completed requests per unit time

= Example:
= 5,000 malloc callsand 5,000 £ree calls in 10 seconds

= Throughput is 1,000 operations/second

17

Performance Goals: Peak Memory Utilization

m Given some sequence of malloc and free requests:
® Ro, Ry, ..., Ry oo, Ria
Def: Aanreante novuload D
m Performance Goals:
= 1) Maximize throughput
= 2) Maximize peak memory utilization

mThese goals are often conflicting!

L3

7 (=]
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
= U= (max< P;) / Hx

19

|
Performance Goals: Peak Memory Utilization

m Given some sequence of malloc and free requests:
® Ro, Ri, ey Riy o) R

m Def: Aggregate payload P,
®* malloc (p) resultsin a block with a payload of p bytes

= After request R has completed, the aggregate payload Py is
the sum of currently allocated payloads

m Def: Current heap size H,
= Assume H is monotonically nondecreasing
* i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
= U= (maxik Pi) / Hx

18

|
Fragmentation

m Poor memory utilization often caused by fragmentation

m Two classes:
= internal fragmentation
= external fragmentation

20

Internal Fragmentation

= For a given block, internal fragmentation occurs if payload is smaller
than block size

Block

Internal Internal
fragmentation = Eayload fragmentation

= Caused by
= Overhead of maintaining heap data structures
= Padding for alignment purposes
" Explicit policy decisions
(e.g., to return a big block to satisfy a small request)
= Depends only on the pattern of previous requests
® Thus, easy to measure

21

|
Implementation Issues

= How do we know how much memory to free(void *) given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in?

= How do we pick a block to use for allocation -- many might fit?

= How do we reinsert freed blocks to our pool of available data?

23

#define SIZ sizeof (int)

External Fragmentation

m Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pt=malloc(arszz) [[[[[[[TTTTTTTTTTT]]

p2=malloc(5*stz) [[[[[T TTTT T [TTTTTT]

p3=matloc(é*stz) [[[[[[[T T T[T [TTTTTT]

free (p2) LTI T T T T T T T ITTITTI T 1]

p4 = malloc(7*s1z) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

22

|
Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Downside: this method requires an extra word for every allocated block

LT T I T T T T

PO = malloc(4*SIZz)

(I ITT T T T T T T T

block size Payload

free (p0)

(I ITT T T T T T T 1 1 7

24

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

e R o N S e';jis(:)rgcf(aags
l:“l‘ ‘ ‘ ‘5‘ ‘ ‘ ‘ ‘ ‘4‘ ‘ ‘ ‘z‘ ‘ allocated/free

= Method 2: Explicit list among the free blocks using pointers

Need
CA« 1T [S« 1 [= for pornters

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

® Can use a balanced tree (e.g., Red-Black tree) with pointers within each
free block, and the length used as a key

25

Detailed Implicit Free List Example

i Double-word Allocated blocks: shaded
i aligned Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Note: both allocated and free blocks are all in the same implicit list

27

e ——
Method 1: Implicit Free List (Ch 9.9.6)

m For each block we need both size and allocation status
" We could store this information in two words, but that is wasteful!
m Standard trick
® When blocks are aligned, some (3) low-order address bits are always 0

= |nstead of storing an always-0 bit, repurpose it as an allocated/free flag
® When reading the Size word, we just mask out this bit

1 word
Size | a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Size: block size
Payload
free blocks e
Payload: application data
(allocated blocks only)
Optional
padding

26

|
Implicit List: Finding a Free Block (9.9.7)

u First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
Pp=p+ (*p & -2); \\ goto next block (word addressed)

" Can take linear time in total number of blocks (allocated and free)

= |n practice it can cause “splinters” at beginning of list — fragmentation!
m Next fit:

= Like first fit, but search list starting where previous search finished

= Should often be faster than first fit: avoids re-scanning unhelpful blocks

= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block (i.e., fits with the fewest bytes left over)
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit 2

28

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting
= Since allocated space might be smaller than free space, we might want to
split the block

~~~~~~~~~~~~~~~~~~
""""""""

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask (zero) out lowest bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

29

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
" Coalescing with next block

PAT T T TaIT T T 1 T2 200001 |
t logically
free (p) P gone

——————————————————————
~~~~~~~

void free_block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*P = *pP + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

31

Implicit List: Freeing a Block

= Simplest implementation:
" Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

" But can lead to “false fragmentation”

,,,,,,,,

free (p) P

malloc(5*s1z) Qops!

There is enough contiguous free space,
but the allocator won’t be able to find it

30

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |Important and general technique!

~~~~~~~
e

--------- ~~¢"——--.\“ ,—"——_-----"‘~~ s,
Lolal | lafal Tlals] | | | [s[al [ [afo]
oo ¥, DGt S e
Header ——1 size | a a = 1: Allocated block
a=0: Free block
Format of
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag — Size a
(footer)

32



Constant Time Coalescing with Boundary Tags

Case 1 Case 2 Case 3 Case 4
) Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Given a block to free and its two neighbors, there are 4 unique combinations of
free/allocated to consider. Let’s look at each case individually

33

Constant Time Coalescing (Case 2)

The block’s predecessor is allocated, but its successor is free.

mi |1 mi |1

ml 1 ml

n 1 n+m2 0
—_—

n

m2 0

m2 0 n+m2 0

35

Constant Time Coalescing (Case 1)

The block’s immediate neighbors are both allocated.

mi |1 mi |1

ml 1 ml

n 1 n 0
 ——

n 1 n 0

m2 1 m2

m2 1 m2 1

34

Constant Time Coalescing (Case 3)

The block’s predecessor is free, but it’s successor is allocated.

ml ‘ 0 n+ml ‘ 0
mil 0
n

—_—
n 1 n+ml 0
m2 1 m2
m2 1 m2 1

36



Constant Time Coalescing (Case 4)

The block’s immediate neighbors are both free.

m1 lo ntmitm2 | 0
ml 0
n
—
n
m2 0
m2 0 n+mil+m2 0

37

Disadvantages of Boundary Tags

u Internal fragmentation
= Extra non-payload bytes needed for boundary tag/footer

u Can it be optimized?
® Which blocks need the footer tag? Only free blocks!
® What does that mean? Can save space!

39

|
Disadvantages of Boundary Tags

m Internal fragmentation
= Extra non-payload bytes needed for boundary tag/footer

m Can it be optimized?
® Which blocks need the footer tag?
® What does that mean?

38

|
Optimization: No Boundary Tag for Allocated
Blocks

m Boundary tag is only needed for free blocks
m Insight: when sizes are multiples of 4 or more, have 2+ spare bits

1 word 1 word
Size |b1 a = 1: Allocated block Size |b0

a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Payload
b Unallocated
Size: block size
Optional Payload: application data
padding Size b0
Allocated Free
Block Block

40

10



No Boundary Tag for Allocated Blocks
(Case 1)

X ml ?1 ml 1
previous
block
block n 11 n 10
being _—
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

@

41

No Boundary Tag for Allocated Blocks
(Case 3)

No Boundary Tag for Allocated Blocks
(Case 2)

. ml ‘ ?1 ml ‘ ?1
previous
block
block nJu mm2 |10
being _—
freed
m2 |10

next
block m2 |10 n+m2 |10

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

42

No Boundary Tag for Allocated Blocks
(Case 4)

X ml 20 n+ml 20
previous
block
ml 20
block 0 0
being
freed n+mil 20
m2 11 m2 01
next
block

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

43

previous mil ‘ 20 n+ml+m2 | ?0
block
mi |20
block n 01
being —_—
freed
m2 ‘ 10
next
lock
bloc m2 ‘ 10 n+ml+m2 | ?0

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

44

11



e ——
Summary of Key Allocator Policies

= Placement policy:
" First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

" Interesting observation: segregated free lists (next lecture) approximate a
best fit placement policy without having to search entire free list

m Splitting policy:
" When do we go ahead and split free blocks?
" How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
® Immediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches some
threshold

45

|
Practice

m Assuming double-word alignment is used and the implicit free
list format discussed in slides is used (i.e., 4 byte header). Block
sizes are rounded up to nearest multiple of 8 bytes to maintain
alignment.

= What would the block size be in bytes (including payload,
header, and padding)? What would be stored in the block
header (in hex)?
® malloc(2)
= malloc(9)
® malloc(16)

47

47

Implicit Lists: Summary

= Implementation: very simple

= Allocate cost:
® linear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:

= will depend on placement policy
" First-fit, next-fit or best-fit

= Not used in practice formalloc/free because of linear-time
allocation
= used in many special purpose applications

= However, the concepts of splitting and boundary tag coalescing
are general to all allocators

46

12



