| |
Administrative Details

= Read CSAPP 9.9

m Lab #6 assigned due Dec. 5 at 5pm

Virtual Memory m Colloquium talk on Friday at 2:35pm in Wege

= Alexis Korb

CSCI 237: Computer Organization ® Fronters in Modern Cryptography
31¢t Lecture, Wednesday, November 19, 2025

Kelly Shaw
1 2
I — I —
Last Time: Virtual Memory Today: Virtual Memory
m Address spaces (Ch 9.2) m Address translation (Ch 9.6)
m VM as a tool for caching (Ch 9.3) m Dynamic Memory Allocation (Ch 9.9)

m VM as a tool for memory management (Ch 9.4)
m VM as a tool for memory protection (Ch 9.5)

Summary of Address Translation Jargon

m Basic Parameters
" N =2": Number of addresses in virtual address space
" M =2™: Number of addresses in physical address space
= P = 2P: Page size (in bytes) of physical and virtual pages
m Components of the virtual address (VA)
= VPN: Virtual page number
= VPO: Virtual page offset

m Components of the physical address (PA)
® PPN: Physical page number
" PPO: Physical page offset (same as VPO)

Address Translation With a Page Table

Virtual address
n-1 p p-1 0
Virtual page number (VPN) | Virtual page offset (VPO) |

Page table
base register

Page table
Valid Physical page number (PPN)

Physical page table
address for the current
process

Translating Virtual to Physical Addresses

m Control register (CR3) stores physical address of Page Table
m Given the page table’s location, how does lookup work?

= Familiar approach: break up the address and index into our cache

Cache address: Virtual address:
[thits_ [sbits | bbits | [n-pbits [pbhits |
— _J\(_J
tag set block VPN VPO
index offset

Typically, how many bits is p? 1092(4096) => 12 bits
What does the VPN tell us? Offset of our PTE in the page table
What does the VPO tell us? Offset of our data within the page

6

Address Translation With a Page Table

Virtual address

n-1 p p1 0
—| Virtual page number (VPN) | Virtual page offset (VPO) |

Page table
base register

Page table
Valid Physical page number (PPN)

Physical page table
address for the current
process

Address Translation With a Page Table Address Translation With a Page Table

Virtual address Virtual address
n-1 p p-1 0 n-1 p p-1 0
Page table Page table
Virtual VPN| Virtual
o b —| irtual page number (VPN) | irtual page offset (VPO) | =g —| Virtual page number (VPN) | Virtual page offset (VPO) |
Page table Page table
Valid Physical page number (PPN) Valid Physical page number (PPN)

Physical page table Physical page table
address for the current
process

address for the current _>H
process

Valid bit = 0:
Page not in memory €

(page fault)

What do we do on a page fault? Page fault exception handler

reads physical page from disk
and updates PTE for this VA.

10

11

T ——
Address Translation With a Page Table Address Translation With a Page Table
Virtual address Virtual address
n-1 p p-1 0 n-1 p p-1 0
b:::er::i‘:'; ——| Virtual page number (VPN | Virtual page offset (VPO) | b:::‘i:::'; ——| Virtual page number (VPN) | Virtual page offset (vPO) |
Page table Page table
Valid Physical page number (PPN) Valid Physical page number (PPN)
Physical page table Physical page table
address for the current address for the current valid bit =1
process process Hit!!
What does a hit mean? The PTE contains the PPN.
Are we done? No. A physical address consists of a
PPN and a PPO. We still need the PPO...
12 13
12 13

Page table
base register

Virtual address
n-1 p p-1

Address Translation With a Page Table

0

—| Virtual page number (VPN) |\f|rtualpageoffset(VPO)|

Page table
Valid Physical page number (PPN)

Physical page table
address for the current

process

h

Valid bit = 1,
PTE has PPN

PPO = VPO!

Physical address

Putting it all together: Address Translation

CPU Chip

m The CPU generates a request for a virtual address

= The MMU drives the page translation

m Let’s explore the interaction between the CPU, MMU, and
Cache/memory on:
= A page table hit
= A page fault (miss)

CPU Chip

CPU

Address Translation: Page Hit

VA MMU)

Data

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in cache/memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Page hit
handled
entirely by
hardware!

16

17

Address Translation: Page Fault

Exception _>{ Page fault handler ‘

(software, in OS kernel)

CPU Chip
(1]
VA

CPU MMU
(7

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory Restarted

4) Valid bit is zero, so MMU triggers page fault exception instruction

5) Handler identifies victim PTE (and, if dirty, swaps it out to disk) should now
hit.

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process. Original process restarts faulting instructionw

18

|
Practice on Your Own

m Suppose a system uses 2048B sized pages and addresses are
specified using 32 bits. How many PTEs would be needed in the
page table for a process? How many bits would be need to
specify the virtual page offset (i.e., which byte in the page is
being accessed)?

19

Integrating VM and Cache: “The players”

o

21

21

Digging Deeper: Integrating VM and Caching

s

20

Integrating VM and Cache: “The game”

Address Translation
PTE
PTEA
CPU l_\LA_. MMUY
PA
Data cache
VA: virtual address, PA: physical address, Data transfer

PTE: page table entry, PTEA = PTE address

Data transfer depends on address translation

22

Integrating VM and Cache

Fast case: Target PTE is cached
- on a PTE hit, no need to go
to slow DRAM to resolve
address
(may still need to for data)

PTE Addr.

cpu VA

Data cache

VA: virtual address, PA: physical address,
PTE: page table entry, PTEA = PTE address

23

23

Integrating VM and Cache

Insight 1: Cache can hold page table entries, like any

other data word!

Insight 2: Address translation happens BEFORE
cache lookup.

VA: virtual address, PA: physical address,
PTE: page table entry, PTEA = PTE address

25

25

Integrating VM and Cache

Slow case: Target PTE is not in SRAM
- Need to go to slow DRAM PTE
even before we consider
our data request

PTE Addr.

CcPU VA MMU

PA

Data cache

24

Speeding up Translation with a TLB

m Problem: Page table entries (PTEs) are cached in L1 like
any other memory word
= PTEs may be evicted by other data references
= Even a PTE hit pays a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU (part of CPU chip)
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for a small number of pages
= Each cache line holds one block consisting of a single PTE

Similar to Instruction and Data cache separation.

26

26

Accessing the TLB
= MMU uses the VPN portion of the virtual address to access
the TLB: S
VPN
TLBT matches tag ~ — — -~
of line within set n-1 pts pts-1 p p-1 0

{ TLB tag (TLBT) | TLBindex (TLBI) | vPO

SetoIE“jg_H PTE |IE||tag|| PTE |I
Setllm|tag|| PTE |Im|tag|| PTE |I<_
.

H

TLBI selects the set
(as we did in Ch 6)

H
SetS-1I|I||tag|| PTE |IE|tag|| PTE |I

27

27
TLB Hit
CPU Chip LB
e PTE
VPN o
3 PA
CPU MMU o Cache/
Memory
Data

A TLB hit eliminates a memory access.
All steps in address translation happen inside MMU and are fast.

29

Accessing the TLB
m MMU uses the VPN portion of the virtual address to access
the TLB: S = 2 sets
VPN

n-1 p+s p+s-1 p p-1 0
| TLB tag (TLBT) | TLBindex (TLBI) | VPO

seto [o) v J &) o L]|

Setllm | tag | PTE

SetS-1 IE“&%JlLliE“ﬁLHL] |>pm—| PPO

Physical Address

28

TLB Miss
CPU Chip T8 o
(2] PTE
VPN |_
VA e
PTEA
cPU MMU S
[PA M y
(5]
Data
0o
A TLB miss incurs an additional memory access (the PTE).
Fortunately, TLB misses are rare. Thanks, locality!
30

30

TLB Fun Facts

m May have separate instruction and data TLBs
= May have multiple levels of TLBs
m Who loads the TLB with entries?
® Hardware-managed:
= Page table walkers walk page table and update TLB
= Software-managed TLB:
= On TLB miss, OS walks page tables and loads TLB

31

|
Page Table Structure

m Recall: A control register (CR3) holds the starting address of a
process’s page table
" How big is a process’s page table?
= Size of a PTE (what is stored)?
= Number of PTEs?
" How big is a process’s working set (roughly speaking)?
= Stack size?
= Heap size?
= Code/text?
u Observations:
" Page table is HUGE, but sparsely populated
= What data structures might we use to represent our page table?

33

Practice on Your Own

= How many times might a TLB need to be accessed when
executing a single instruction (from fetch to write back)?

32

Multi-Level Page Tables: Concrete Example

m Suppose: Level 2
= 4KB (212) page size, 48-bit address space, 8-byte PTE Tables
= Problem?
1
" Would need a 512 GB page table! Level 1
= 248 /212 = 236 = # entries in page table Table
= 23 bytes per entry -

= 248 % 2-12 % 23 = 239 phytes in every page table
m Common solution: Multi-level page tables

" No need to waste space for unallocated pages!
m Example: 2-level page table

= Level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)

34

e ——
A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
vo |)
o 1—— | PrE0
VP 1023 2K allocated VM pages
PTE1 VP 1023 > for code and data
PTE 2 (null) PTE 1023
PTE 3 (null) v '2';)47
J
E;cahp:T: PTE 4 (null) Each PTE PTEO 3
4MB PTE 5 (null) maps a 4KB
chunk of | PTE6 (null) d‘i‘/;‘; of PTE 1023
VAS PTE 7 (null) Gap > 6K unallocated VM pages
PTE8
1023 null
(1K-9) PTEs)
null PTEs PTE 1023 1023 |
unallocated 1023 unallocated pages
pages
P _ VP 9215 1 allocated VM page
32 bit addresses, 4KB pages, 4-byte PTEs for the stack

(232 = 4GB = 1024 x 4MB)

35

