
1

1

Virtual Memory

CSCI 237: Computer Organization
31st Lecture, Wednesday, November 19, 2025

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Read CSAPP 9.9
¢ Lab #6 assigned due Dec. 5 at 5pm
¢ Colloquium talk on Friday at 2:35pm in Wege
§ Alexis Korb
§ Fronters in Modern Cryptography

2

3

Last Time: Virtual Memory

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)

3
4

Today: Virtual Memory

¢ Address translation (Ch 9.6)
¢ Dynamic Memory Allocation (Ch 9.9)

4

2

5

Summary of Address Translation Jargon
¢ Basic Parameters
§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (in bytes) of physical and virtual pages

¢ Components of the virtual address (VA)
§ VPN: Virtual page number
§ VPO: Virtual page offset
§ TLBI: TLB (Translation Lookaside Buffer) index
§ TLBT: TLB tag

¢ Components of the physical address (PA)
§ PPN: Physical page number
§ PPO: Physical page offset (same as VPO)

5
6

Translating Virtual to Physical Addresses

¢ Control register (CR3) stores physical address of Page Table
¢ Given the page table’s location, how does lookup work?
§ Familiar approach: break up the address and index into our cache

t bits s bits b bits
Cache address:

tag set
index

block
offset

n-p bits p bits
Virtual address:

VPN VPO

Typically, how many bits is p?

What does the VPO tell us?

log2(4096) => 12 bits

Offset of our data within the page
What does the VPN tell us? Offset of our PTE in the page table

6

8

Address Translation With a Page Table

Page table
base register

Valid Physical page number (PPN)
Page table

Physical page table
address for the current
process

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address
0p-1pn-1

8
9

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table
base register

Page table

Physical page table
address for the current
process

0p-1pn-1

9

3

10

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table
base register

Page table

Physical page table
address for the current
process

0p-1pn-1

10
11

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table
base register

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

What do we do on a page fault? Page fault exception handler
reads physical page from disk
and updates PTE for this VA.

11

12

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table
base register

Page table

Physical page table
address for the current
process

0p-1pn-1

12
13

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table
base register

Page table

Physical page table
address for the current
process

0p-1pn-1

Valid bit = 1
Hit!!!

What does a hit mean?

Physical page number (PPN)

The PTE contains the PPN.
No. A physical address consists of a
PPN and a PPO. We still need the PPO…

Are we done?

13

4

14

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

Page table

Physical page table
address for the current
process

0p-1pn-1

Physical page number (PPN)

Valid bit = 1,
PTE has PPN

Physical page number (PPN)

0p-1pm-1

Physical page offset (PPO)

PPO = VPO!

14
16

Putting it all together: Address Translation

MMU
Cache/

Memory

CPU

CPU Chip

¢ The CPU generates a request for a virtual address
¢ The MMU drives the page translation
¢ Let’s explore the interaction between the CPU, MMU, and

Cache/memory on:
§ A page table hit
§ A page fault (miss)

16

17

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU

CPU Chip PTE Addr.

PTE
VA
1

2

3

4

5

Page hit
handled

entirely by
hardware!

17
18

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim PTE (and, if dirty, swaps it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process. Original process restarts faulting instruction

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PTE Addr.
2

PTE

3

4

5

Disk

Page fault handler
(software, in OS kernel)

Victim page

New page

Exception

6

7

Restarted
instruction
should now

hit.

18

5

19

Practice on Your Own

¢ Suppose a system uses 2048B sized pages and addresses are
specified using 32 bits. How many PTEs would be needed in the
page table for a process? How many bits would be need to
specify the virtual page offset (i.e., which byte in the page is
being accessed)?

19
20

SRAM
Cache

DRAM
Memory

Digging Deeper: Integrating VM and Caching

Cache/
Memory

CPU MMU

20

21

Integrating VM and Cache: “The players”

CPU MMU L1 Cache Memory

21
22

Integrating VM and Cache: “The game”

CPU MMU
VA

PTEA

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA
hit

Data

PA
hit

PTEA

Data

PTE

L1
cache

VA: virtual address, PA: physical address,
PTE: page table entry, PTEA = PTE address

Address Translation

Data transfer

Data transfer depends on address translation

22

6

23

Integrating VM and Cache

CPU MMUVA

PTE Addr.

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA
hit

Data

PA
hit

PTEA

Data

PTE

L1
cache

VA: virtual address, PA: physical address,
PTE: page table entry, PTEA = PTE address

Fast case: Target PTE is cached
 - on a PTE hit, no need to go
 to slow DRAM to resolve
 address
(may still need to for data)

23
24

Integrating VM and Cache

CPU MMUVA

PTE Addr.

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA
hit

Data

PA
hit

PTEA

Data

PTE

L1
cache

Slow case: Target PTE is not in SRAM
 - Need to go to slow DRAM
 even before we consider
 our data request

24

25

Integrating VM and Cache

CPU MMU
VA

PTEA

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA
hit

Data

PA
hit

PTEA

Data

PTE

L1
cache

VA: virtual address, PA: physical address,
PTE: page table entry, PTEA = PTE address

Insight 1: Cache can hold page table entries, like any
other data word!
Insight 2: Address translation happens BEFORE
cache lookup.

25
26

Speeding up Translation with a TLB

¢Problem: Page table entries (PTEs) are cached in L1 like
any other memory word
§ PTEs may be evicted by other data references
§ Even a PTE hit pays a small L1 delay

¢ Solution: Translation Lookaside Buffer (TLB)
§ Small set-associative hardware cache in MMU (part of CPU chip)
§ Maps virtual page numbers to physical page numbers
§ Contains complete page table entries for a small number of pages
§ Each cache line holds one block consisting of a single PTE

Similar to Instruction and Data cache separation.

26

7

27

Accessing the TLB

¢ MMU uses the VPN portion of the virtual address to access
the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+s-1p+s

PTEtagv
…

PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet S-1

S = 2s sets

TLBI selects the set
(as we did in Ch 6)

TLBT matches tag
of line within set

27
28

Accessing the TLB

¢ MMU uses the VPN portion of the virtual address to access
the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+s-1p+s

PTEtagv

…

PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet S-1

S = 2s sets

PPN PPO
Physical Address

28

29

TLB Hit

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates a memory access.
All steps in address translation happen inside MMU and are fast.

TLB

2

VPN

PTE

3

29
30

TLB Miss

MMU Cache/
MemoryPA

Data

CPU

CPU Chip

PTE

VA
1

5

6

TLB

2

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE).
Fortunately, TLB misses are rare. Thanks, locality!

30

8

31

TLB Fun Facts

¢ May have separate instruction and data TLBs
¢ May have multiple levels of TLBs
¢ Who loads the TLB with entries?
§ Hardware-managed:

§ Page table walkers walk page table and update TLB
§ Software-managed TLB:

§ On TLB miss, OS walks page tables and loads TLB

31
32

Practice on Your Own

¢ How many times might a TLB need to be accessed when
executing a single instruction (from fetch to write back)?

32

33

Page Table Structure

¢ Recall: A control register (CR3) holds the starting address of a
process’s page table
§ How big is a process’s page table?

§ Size of a PTE (what is stored)?
§ Number of PTEs?

§ How big is a process’s working set (roughly speaking)?
§ Stack size?
§ Heap size?
§ Code/text?

¢ Observations:
§ Page table is HUGE, but sparsely populated

¢ What data structures might we use to represent our page table?

33
34

Multi-Level Page Tables: Concrete Example
¢ Suppose:
§ 4KB (212) page size, 48-bit address space, 8-byte PTE

¢ Problem?
§ Would need a 512 GB page table!

§ 248 / 212 = 236 = # entries in page table
§ 23 bytes per entry
§ 248 * 2-12 * 23 = 239 bytes in every page table

¢ Common solution: Multi-level page tables
§ No need to waste space for unallocated pages!

¢ Example: 2-level page table
§ Level 1 table: each PTE points to a page table (always

memory resident)
§ Level 2 table: each PTE points to a page

(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...

34

9

35

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0
...

VP 1023

VP 1024
...

VP 2047

Gap

0

PTE 0

...
PTE 1023

PTE 0

...
PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1
PTE 2 (null)
PTE 3 (null)

PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack32 bit addresses, 4KB pages, 4-byte PTEs

(232 = 4GB = 1024 x 4MB)

Each PTE
maps a

4MB
chunk of

VAS

Each PTE
maps a 4KB

chunk of
VAS

35

