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Virtual Memory

CSCI 237: Computer Organization
30th Lecture, Monday, November 17, 2025 

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition
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Administrative Details

¢ Read CSAPP 9.1-9.6 (Ch. 9 sections are short)
¢ Lab #5 due Tueday at 11pm
¢ Sign up for partner on lab #6 by Wednesday at 8am
¢ Colloquium talk on Tuesday at 2:35pm in Wege
§ David Paulius, postdoc in Intelligent Robot Lab at Brown University
§ ”Object-level Planning: Bridging Human Knowledge and Task and Motion 

Planning”

¢ Book extra credit
§ Need to sign up at least week in advance
§ Last days to talk to me are reading period
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Last Time: Caches

¢ Cache memory organization and operation (Ch 6.4)
¢ Caches in real systems
¢ Performance impact of caches 
§ The memory mountain
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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Question: How Does This Work?!  
Process 1 Process 2 Process n

Solution: Virtual Memory
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A System Using Physical Addressing

¢ Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

¢ Used in all modern servers, laptops, and smart phones
¢ One of the great ideas in computer science
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Address Spaces: Terminology

¢ Linear address space: Ordered set of contiguous non-
negative integer addresses (we always assume this):
  {0, 1, 2, 3 … }

¢ Virtual address space: Set of N = 2n virtual addresses
  {0, 1, 2, 3, …, N-1}

¢ Physical address space: Set of M = 2m physical 
addresses
  {0, 1, 2, 3, …, M-1}
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Why Virtual Memory (VM)?
¢ Uses main memory efficiently
§ Use DRAM as a cache for parts of a virtual address space

¢ Simplifies memory management
§ Each process gets the same uniform linear address space

¢ Isolates address spaces
§ Enables multiple processes to execute simultaneously
§ One process can’t interfere with another’s memory 
§ Processes can allocate memory dynamically
§ User program cannot access privileged kernel information and 

code
¢ Total virtual memory in use can exceed physical memory
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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Review: Ex. Memory 
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VM as a Tool for Caching

¢ Conceptually, virtual memory is an array of N contiguous 
bytes stored on disk. 

¢ The contents of the array on disk are cached in physical 
memory (DRAM cache)
§ These cache blocks are called pages (size is P = 2p bytes)
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DRAM Cache Organization
¢ DRAM cache organization driven by the enormous miss penalty
§ DRAM is about 10x slower than SRAM
§ Disk is about 10,000x slower than DRAM

¢ Consequences
§ Large page (block) size: typically 4 KB, sometimes 4 MB
§ Fully associative 

§ Any VP can be placed in any PP
§ Requires a “large” mapping function – different from cache memories

§ Highly sophisticated, expensive replacement algorithms
§ Too complicated and open-ended to be implemented in hardware

§ Write-back rather than write-through
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Enabling Data Structure: Page Table
¢ A page table is an array of page table entries (PTEs) that maps 

virtual pages to physical pages. 
§ Per-process kernel (i.e., OS) data structure in DRAM
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Page Hit
¢ Page hit: reference to VM word that is in physical memory 

(DRAM cache hit)
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Page Fault
¢ Page fault: reference to VM word that is not in physical memory 

(DRAM cache miss)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
¢ Offending instruction is restarted: now a page hit!
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DRAM is known as demand paging
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Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.
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Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.
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Locality to the Rescue Again!
¢ Virtual memory seems terribly inefficient, but it works because 

of locality. 

¢ At any point in time, programs tend to access a set of active 
virtual pages called the working set
§ Programs with better temporal locality will have smaller working sets

¢ If (working set size < main memory size) 
§ Good performance for one process after initial compulsory misses

¢ If ( SUM(working set sizes) > main memory size ) 
§ Thrashing: Performance meltdown where pages are swapped (copied) in 

and out continuously
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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VM as a Tool for Memory Management
¢ Key idea: each process has its own virtual address space
§ A process can view memory as a simple linear array
§ Mapping function scatters virtual addresses through physical memory
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VM as a Tool for Memory Management
¢ Simplifies memory allocation
§ Each virtual page can be mapped to any physical page
§ A virtual page can be stored in different physical pages at different times

¢ Allows sharing code and data among processes
§ Can map virtual pages to the same physical page (here: PP 6)
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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VM as a Tool for Memory Protection
¢ General Idea: Extend PTEs with permission bits
¢ MMU checks these bits on each access
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Today: Virtual Memory 

¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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VM Address Translation (formally)
¢ Virtual Address Space
§ V = {0, 1, …, N–1}

¢ Physical Address Space
§ P = {0, 1, …, M–1}

¢ Address Translation.       MAP:  V ®  P  U  {Æ}

§ For virtual address a:
§ MAP(a)  =  a’  if data at virtual address a in V is at physical 

address a’ in P

§ MAP(a)  = Æ  if data at virtual address a is not in physical 
memory (either unallocated or stored on disk)
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Summary of Address Translation Jargon
¢ Basic Parameters
§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (in bytes) of physical and virtual pages

¢ Components of the virtual address (VA)
§ VPN: Virtual page number 
§ VPO: Virtual page offset 
§ TLBI: TLB (Translation Lookaside Buffer) index
§ TLBT: TLB tag

¢ Components of the physical address (PA)
§ PPN: Physical page number
§ PPO: Physical page offset (same as VPO)
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