
1

1

Virtual Memory

CSCI 237: Computer Organization
30th Lecture, Monday, November 17, 2025

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Read CSAPP 9.1-9.6 (Ch. 9 sections are short)
¢ Lab #5 due Tueday at 11pm
¢ Sign up for partner on lab #6 by Wednesday at 8am
¢ Colloquium talk on Tuesday at 2:35pm in Wege
§ David Paulius, postdoc in Intelligent Robot Lab at Brown University
§ ”Object-level Planning: Bridging Human Knowledge and Task and Motion

Planning”

¢ Book extra credit
§ Need to sign up at least week in advance
§ Last days to talk to me are reading period

2

3

Last Time: Caches

¢ Cache memory organization and operation (Ch 6.4)
¢ Caches in real systems
¢ Performance impact of caches
§ The memory mountain

3
4

Today: Virtual Memory

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)

4

2

5

Question: How Does This Work?!
Process 1 Process 2 Process n

Solution: Virtual Memory

5
6

A System Using Physical Addressing

¢ Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

6

7

A System Using Virtual Addressing

¢ Used in all modern servers, laptops, and smart phones
¢ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

7
8

Address Spaces: Terminology

¢ Linear address space: Ordered set of contiguous non-
negative integer addresses (we always assume this):
 {0, 1, 2, 3 … }

¢ Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

¢ Physical address space: Set of M = 2m physical
addresses
 {0, 1, 2, 3, …, M-1}

8

3

9

Why Virtual Memory (VM)?
¢ Uses main memory efficiently
§ Use DRAM as a cache for parts of a virtual address space

¢ Simplifies memory management
§ Each process gets the same uniform linear address space

¢ Isolates address spaces
§ Enables multiple processes to execute simultaneously
§ One process can’t interfere with another’s memory
§ Processes can allocate memory dynamically
§ User program cannot access privileged kernel information and

code
¢ Total virtual memory in use can exceed physical memory

9
10

Today: Virtual Memory

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)

10

11

Review: Ex. Memory
 Hierarchy

L1 cache
(SRAM)

Main memory
(DRAM)

Secondary Storage
(HDD/SSD)

L2 cache
(SRAM)

L3 cache
(SRAM)

10x slower

10,000x slower

O(MiB)

O(GiB)

O(TiB)

11
12

VM as a Tool for Caching

¢ Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

¢ The contents of the array on disk are cached in physical
memory (DRAM cache)
§ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

12

4

13

DRAM Cache Organization
¢ DRAM cache organization driven by the enormous miss penalty
§ DRAM is about 10x slower than SRAM
§ Disk is about 10,000x slower than DRAM

¢ Consequences
§ Large page (block) size: typically 4 KB, sometimes 4 MB
§ Fully associative

§ Any VP can be placed in any PP
§ Requires a “large” mapping function – different from cache memories

§ Highly sophisticated, expensive replacement algorithms
§ Too complicated and open-ended to be implemented in hardware

§ Write-back rather than write-through

13
14

Enabling Data Structure: Page Table
¢ A page table is an array of page table entries (PTEs) that maps

virtual pages to physical pages.
§ Per-process kernel (i.e., OS) data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

14

15

Page Hit
¢ Page hit: reference to VM word that is in physical memory

(DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

15
16

Page Fault
¢ Page fault: reference to VM word that is not in physical memory

(DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

16

5

17

Handling Page Fault
¢ Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

17
18

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

18

19

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

19
20

Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
¢ Offending instruction is restarted: now a page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

20

6

21

Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

null

21
22

Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

22

23

Locality to the Rescue Again!
¢ Virtual memory seems terribly inefficient, but it works because

of locality.

¢ At any point in time, programs tend to access a set of active
virtual pages called the working set
§ Programs with better temporal locality will have smaller working sets

¢ If (working set size < main memory size)
§ Good performance for one process after initial compulsory misses

¢ If (SUM(working set sizes) > main memory size)
§ Thrashing: Performance meltdown where pages are swapped (copied) in

and out continuously

23
24

Today: Virtual Memory

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)

24

7

25

VM as a Tool for Memory Management
¢ Key idea: each process has its own virtual address space
§ A process can view memory as a simple linear array
§ Mapping function scatters virtual addresses through physical memory

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

25
26

VM as a Tool for Memory Management
¢ Simplifies memory allocation
§ Each virtual page can be mapped to any physical page
§ A virtual page can be stored in different physical pages at different times

¢ Allows sharing code and data among processes
§ Can map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Why?

26

28

Today: Virtual Memory

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)

28
29

VM as a Tool for Memory Protection
¢ General Idea: Extend PTEs with permission bits
¢ MMU checks these bits on each access

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:
VP 2:

•
••

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes

Yes

Yes

Yes

No

29

8

30

Today: Virtual Memory

¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)

30
31

VM Address Translation (formally)
¢ Virtual Address Space
§ V = {0, 1, …, N–1}

¢ Physical Address Space
§ P = {0, 1, …, M–1}

¢ Address Translation. MAP: V ® P U {Æ}

§ For virtual address a:
§ MAP(a) = a’ if data at virtual address a in V is at physical

address a’ in P

§ MAP(a) = Æ if data at virtual address a is not in physical
memory (either unallocated or stored on disk)

31

32

Summary of Address Translation Jargon
¢ Basic Parameters
§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (in bytes) of physical and virtual pages

¢ Components of the virtual address (VA)
§ VPN: Virtual page number
§ VPO: Virtual page offset
§ TLBI: TLB (Translation Lookaside Buffer) index
§ TLBT: TLB tag

¢ Components of the physical address (PA)
§ PPN: Physical page number
§ PPO: Physical page offset (same as VPO)

32

