| |
Administrative Details

= Read CSAPP 9.1-9.6 (Ch. 9 sections are short)

Virtual M m Lab #5 due Tueday at 11pm
Irtua emory m Sign up for partner on lab #6 by Wednesday at 8am

m Colloquium talk on Tuesday at 2:35pm in Wege
® David Paulius, postdoc in Intelligent Robot Lab at Brown University
= "Object-level Planning: Bridging Human Knowledge and Task and Motion

CSCl 237: Computer Organization
30th Lecture, Monday, November 17, 2025

Planning”
Kelly Shaw m Book extra credit
" Need to sign up at least week in advance
= Last days to talk to me are reading period
1 2
| |
Last Time: Caches Today: Virtual Memory
m Cache memory organization and operation (Ch 6.4) m Address spaces (Ch 9.2)
m Caches in real systems m VM as a tool for caching (Ch 9.3)
m Performance impact of caches m VM as a tool for memory management (Ch 9.4)
® The memory mountain m VM as a tool for memory protection (Ch 9.5)

m Address translation (Ch 9.6)

Question: How Does This Work?!

Process 1 Process 2 Process n

00007FFFFFFFFFFF 00007FFFFFFFFFFF
Stack Stack Stack

! | !

Shared Shared Shared
Libraries Libraries Libraries
t t t

Heap Heap Heap

Data Data Data

Text Text Text
400000 400000
000000 000000

Solution: Virtual Memory

A System Using Virtual Addressing

Main memory
0:
1:

CPU Chip

Virtual address Physical address 2:

(VA) (PA)
CPU 2
1 4100

PNOUHW
[—

Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science

A System Using Physical Addressing

Main memory
0:
1

Physical address 2:
PA
4

CPU

PNoUHRW
re——

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Address Spaces: Terminology

m Linear address space: Ordered set of contiguous non-
negative integer addresses (we always assume this):
{0,1,2,3...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,..,N-1}

m Physical address space: Set of M = 2™ physical
addresses

{0,1,2,3, .., M-1}

|
Why Virtual Memory (VM)?

m Uses main memory efficiently

" Use DRAM as a cache for parts of a virtual address space
m Simplifies memory management

" Each process gets the same uniform linear address space
m Isolates address spaces

= Enables multiple processes to execute simultaneously

" One process can’t interfere with another’s memory

® Processes can allocate memory dynamically
® User program cannot access privileged kernel information and
code

m Total virtual memory in use can exceed physical memory

Review: Ex. Memory /"

Hierarchy AN

/7
/7

/' /L1 cache\ *
/ (SRAM) \

L2 cache \

O(MiB) /l (SRAM) *

,/ L3 cache \\\ 10x slower
) (SRAM) \
Jr/m e e e, — -\

Main memory \
(DRAM) \

. 10,000x slower

Secondary Storage
(HDD/SSD)

11

e ——
Today: Virtual Memory

m Address spaces (Ch 9.2)

m VM as a tool for caching (Ch 9.3)

m VM as a tool for memory management (Ch 9.4)
m VM as a tool for memory protection (Ch 9.5)

m Address translation (Ch 9.6)

10

|
VM as a Tool for Caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.
m The contents of the array on disk are cached in physical
memory (DRAM cache)
" These cache blocks are called pages (size is P = 2° bytes)
Virtual memory Physical memory

VP 0 [Unallocated |°
VP 1| cached \ Empty [PPO
Uncached PP1
Unallocated Empty
Cached
Jlnsa.dud_><: Empty
Cached PP 2MP.1

VP 2n-1 [Uncached |, , v

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

12

DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM

= Disk is about 10,000x slower than DRAM

m Consequences
= Large page (block) size: typically 4 KB, sometimes 4 MB
® Fully associative
= Any VP can be placed in any PP
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware
= Write-back rather than write-through

13

Page Hit
m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)
; Physical memory
[viruat sdress | Physica poge (oRAM)
number or
Valid disk address x:; PP O
PTEO| O null X
1 —
VP4
1 -— PP3
0 [
1 CantS
0 null P Virtual memory
0 S Y (disk)
Frerle <]
Memory resident\\\\\ \\
preche T Tom
(DRAM)
15

15

Enabling Data Structure: Page Table
m A page table is an array of page table entries (PTEs) that maps
virtual pages to physical pages.
= Per-process kernel (i.e., OS) data structure in DRAM
Physical memory
Physical page (DRAM)
number or
Valid disk address x; PPO
PTEO| O null
L — xz PP 3
1 «—
0 e
1 Cats
0 null 1 Virtual memory
0 - AN (disk)
Memory resident\\ \\\
page table \\ R
(DRAM) N VP3
RN
VP7

14

Page Fault

m Page fault: reference to VM word that is not in physical memory

(DRAM cache miss)
Physical memory
Physical page (DRAM)
Virtual address number or
Valid __disk address ﬁ; PPO
PTEO| O null P 7
1 | VP7 |
VP4
1 — PP3
0 e
1 Cats
[1] null K. Virtual memory
0 - A (disk)
PrE7 |1 o
Memory resident ~~< RN
e . w1
(DRAM) Taal VP3
Se

16

Handling Page Fault
= Page miss causes page fault (an exception)
Physical memory
Physical page (DRAM)
Virtual address number or
Valid disk address x:; PPO
PTEO| O null
VP7
1 — VP4 PP3
1 «—
0 e
1 Tt
0 null > Virtual memory
0 S Ry (disk)
Memory resident\‘x\ \\
page table \‘\\ SN
(DRAM)
17

17

Handling Page Fault
m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)
Physical memory
Physical page (DRAM)
Virtual address number or
Valid disk address ﬁ; PPO
PTEO| O null
VP7
1 — VP4
1 — PP3
0 Q
1 %
0 null Virtual memory
0 S AN (disk)
Memory resident\\\ N
e N o v
(DRAM) ~.
-
18
18

Handling Page Fault
m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)
Physical Physical memory
'sical page
Virtual address n{:mberpof (DRAM)
Valid disk address 3:; PP O
PTEO| O null P 7
1 VP3
1 — PP3
1 —
0 [y
0 null "~ Virtual memory
0 P k. (disk)
PTE7[1 AN BN
Memory resident\~\\ \\
page table VUG v
(DRAM) ASUIRN
19

19

Handling Page Fault
m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here VP 4)
m Offending instruction is restarted: now a page hit!
Physical page Physical memory
Virtual address number or (DRAM)
Valid disk address x; PPO
PTEO| O null VP 7
1 — VP3 PP3
1 «—
1 —
0 .
1] null _~y Virtual memory
0 - k. (disk)
3l e
Memory resident \\\ \\\
Poge ws]
{DRAM) ol s
~ VP4
Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging
20

20

Allocating Pages
m Allocating a new page (VP 5) of virtual memory.
Physical memory
Physical page (DRAM)
number or
Valid disk address x:; PP O
PTEO| O null P 7
1
VP3 PP3
1 «—
1 —
0
0 null >« Virtual memory
0 - < (disk)
PrE7[T C2Ai B
Memory resident >, s
page table Sso \‘\
(DRAM) NSRS
S VP4
]
VP7
il

21

Locality to the Rescue Again!

m Virtual memory seems terribly inefficient, but it works because
of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set
" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
® Good performance for one process after initial compulsory misses

m If (SUM(working set sizes) > main memory size)

® Thrashing: Performance meltdown where pages are swapped (copied) in
and out continuously

23

Allocating Pages

m Allocating a new page (VP 5) of virtual memory.

Physical memory

Physical page (DRAM)
number or T
Valid disk address o PPO
PTEO| O null S
i -— vP3 PP3
1 —
0 .
0 LN Virtual memory
0 e« k. (disk)
S ~ ~
Previl o [w1 |
Memory resident ~ \\\\\
page table N NN
(DRAM) NN
RN vPa
IS
VP7

22

Today: Virtual Memory

m Address spaces (Ch 9.2)

|

m VM as a tool for memory management (Ch 9.4)
m VM as a tool for memory protection (Ch 9.5)

m Address translation (Ch 9.6)

24

VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" A process can view memory as a simple linear array
" Mapping function scatters virtual addresses through physical memory

’ \
|‘ Virtual 0 | Addres's 0 Physical
1 Address VP1 translation Address
: Space for VP2 Space
1 Process 1: (DRAM)
' L 1]
\ N-1

it (e.g., read-only
T T T T T s s s s s library code)
I‘ Virtual 0
1 Address VP1
: Space for VP2
1 Process 2:
1
\ vl 1

""""""""" 2

|
Today: Virtual Memory

m Address spaces (Ch 9.2)

|

|

m VM as a tool for memory protection (Ch 9.5)
m Address translation (Ch 9.6)

28

VM as a Tool for Memory Management

m Simplifies memory allocation
= Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times
= Allows sharing code and data among processes Why?
® Can map virtual pages to the same physical page (here: PP 6)

d
[Virtual 0 Y Addres.s 0 Physical
! Address il 1 translation Address
| Space for Space
: Process 1: (DRAM)
1
\

S s s (e.g., read-only
ymmmmmmmmmmm library code)
[Virtual
: Address
1 Space for
: Process 2:
\

VM as a Tool for Memory Protection

m General Idea: Extend PTEs with permission bits
m MMU checks these bits on each access

U Physical
| Processi: _SUP__READ WRITE EXEC Address \, Address Space
! VPO | No | Yes | No | Yes PP 6 |
1 VP 1: No Yes Yes Yes PP4 \

: VP2: | Yes | Yes | Yes No PP2 R

\

_______________________ PP 4
.
.
:

PP 6

T T T
U'Processj: _SUP__READ WRITE EXEC Address P
! VPO:| No Yes No Yes PP9
| PP 9
1 VP1:| Yes Yes Yes Yes PP6
| VP2:| No | Yes | Yes | Yes PP 11 PP 11

Today: Virtual Memory VM Address Translation (formally)
- m Virtual Address Space

. "V={0,1,.., N-1}

- m Physical Address Space

*pP={0,1,.., M-1}
m Address Translation. MAP: V > P U {2}

m Address translation (Ch 9.6)

= For virtual address a:

= MAP(a) = a’ if data at virtual address a in Vis at physical
addressa’in P

= MAP(a) = & if data at virtual address a is not in physical
memory (either unallocated or stored on disk)

30 31

Summary of Address Translation Jargon

m Basic Parameters
= N =2": Number of addresses in virtual address space
= M =2™: Number of addresses in physical address space
= P =2r: Page size (in bytes) of physical and virtual pages
m Components of the virtual address (VA)
= VPN: Virtual page number
= VPO: Virtual page offset

m Components of the physical address (PA)
= PPN: Physical page number
= PPO: Physical page offset (same as VPO)

32

