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Virtual Memory

CSCI 237: Computer Organization
30st Lecture, Monday, November 18, 2024 

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition
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Administrative Details

¢ Read CSAPP 9.3-9.6 (Ch. 9 sections are short)
¢ Lab #5 due Wednesday at 11pm
¢ Lab #6 partner signup due Friday at 8am
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Last Time: Cache Performance 

¢ Caches in real systems
¢ Performance impact of caches 
§ The memory mountain
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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Question: How Does This Work?!  
Process 1 Process 2 Process n

Solution: Virtual Memory
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A System Using Physical Addressing

¢ Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

¢ Used in all modern servers, laptops, and smart phones
¢ One of the great ideas in computer science
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Address Spaces: Terminology

¢ Linear address space: Ordered set of contiguous non-
negative integer addresses (we always assume this):
  {0, 1, 2, 3 … }

¢ Virtual address space: Set of N = 2n virtual addresses
  {0, 1, 2, 3, …, N-1}

¢ Physical address space: Set of M = 2m physical 
addresses
  {0, 1, 2, 3, …, M-1}
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Why Virtual Memory (VM)?
¢ Uses main memory efficiently
§ Use DRAM as a cache for parts of a virtual address space

¢ Simplifies memory management
§ Each process gets the same uniform linear address space

¢ Isolates address spaces
§ Enables multiple processes to execute simultaneously
§ One process can’t interfere with another’s memory
§ Processes can allocate memory dynamically
§ User program cannot access privileged kernel information and 

code
¢ Total virtual memory in use can exceed physical memory
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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Review: Ex. Memory 
Hierarchy

L1 cache 
(SRAM)

Main memory
(DRAM)

Secondary Storage
(HDD/SSD)

L2 cache 
(SRAM)

L3 cache 
(SRAM)

10x slower

10,000x slower

O(MiB)

O(GiB)

O(TiB)
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VM as a Tool for Caching

¢ Conceptually, virtual memory is an array of N contiguous 
bytes stored on disk. 

¢ The contents of the array on disk are cached in physical 
memory (DRAM cache)
§ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
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0
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0

Virtual pages (VPs) 
stored on disk

Physical pages (PPs) 
cached in DRAM
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DRAM Cache Organization
¢ DRAM cache organization driven by the enormous miss penalty

§ DRAM is about 10x slower than SRAM
§ Disk is about 10,000x slower than DRAM

¢ Consequences
§ Large page (block) size: typically 4 KB, sometimes 4 MB
§ Fully associative 

§ Any VP can be placed in any PP
§ Requires a “large” mapping function – different from cache memories

§ Highly sophisticated, expensive replacement algorithms
§ Too complicated and open-ended to be implemented in hardware

§ Write-back rather than write-through
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Enabling Data Structure: Page Table
¢ A page table is an array of page table entries (PTEs) that maps 

virtual pages to physical pages. 
§ Per-process kernel (i.e., OS) data structure in DRAM
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Page Hit
¢ Page hit: reference to VM word that is in physical memory 

(DRAM cache hit)
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Page Fault
¢ Page fault: reference to VM word that is not in physical memory 

(DRAM cache miss)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
¢ Page miss causes page fault (an exception)
¢ Page fault handler selects a victim to be evicted (here VP 4)
¢ Offending instruction is restarted: now a page hit!
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Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.
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Allocating Pages
¢ Allocating a new page (VP 5) of virtual memory.
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Locality to the Rescue Again!
¢ Virtual memory seems terribly inefficient, but it works because 

of locality. 

¢ At any point in time, programs tend to access a set of active 
virtual pages called the working set
§ Programs with better temporal locality will have smaller working sets

¢ If (working set size < main memory size) 
§ Good performance for one process after initial compulsory misses

¢ If ( SUM(working set sizes) > main memory size ) 
§ Thrashing: Performance meltdown where pages are swapped (copied) in 

and out continuously
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)



25

VM as a Tool for Memory Management
¢ Key idea: each process has its own virtual address space

§ A process can view memory as a simple linear array
§ Mapping function scatters virtual addresses through physical memory

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1
(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...
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PP 8
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0

M-1

Address 
translation
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VM as a Tool for Memory Management
¢ Simplifies memory allocation

§ Each virtual page can be mapped to any physical page
§ A virtual page can be stored in different physical pages at different times

¢ Allows sharing code and data among processes
§ Can map virtual pages to the same physical page (here: PP 6)

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1
(e.g., read-only 
library code)

Virtual 
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Process 2:
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...
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VP 1
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PP 8

...

0

M-1

Address 
translation

Why?
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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VM as a Tool for Memory Protection
¢ General Idea: Extend PTEs with permission bits
¢ MMU checks these bits on each access

Process i: AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

Yes

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

Physical 
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes
Yes

Yes

Yes

No
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Today: Virtual Memory 

¢ Address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)
¢ VM as a tool for memory management (Ch 9.4)
¢ VM as a tool for memory protection (Ch 9.5)
¢ Address translation (Ch 9.6)
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VM Address Translation (formally)
¢ Virtual Address Space
§ V = {0, 1, …, N–1}

¢ Physical Address Space
§ P = {0, 1, …, M–1}

¢ Address Translation.       MAP:  V ®  P  U  {Æ}

§ For virtual address a:
§ MAP(a)  =  a’  if data at virtual address a in V is at physical 

address a’ in P

§ MAP(a)  = Æ  if data at virtual address a is not in physical 
memory (either unallocated or stored on disk)
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Summary of Address Translation Jargon
¢ Basic Parameters
§ N = 2n : Number of addresses in virtual address space
§ M = 2m : Number of addresses in physical address space
§ P = 2p : Page size (in bytes) of physical and virtual pages

¢ Components of the virtual address (VA)
§ VPN: Virtual page number 
§ VPO: Virtual page offset 
§ TLBI: TLB (Translation Lookaside Buffer) index
§ TLBT: TLB tag

¢ Components of the physical address (PA)
§ PPN: Physical page number
§ PPO: Physical page offset (same as VPO)
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Translating Virtual to Physical Addresses

¢ Control register (CR3) stores physical address of Page Table
¢ Given the page table’s location, how does lookup work?

§ Familiar approach: break up the address and index into our cache

t bits s bits b bits
Cache address:

tag set
index

block
offset

n-p bits p bits
Virtual address:

VPN VPO

Typically, how many bits is p?

What does the VPO tell us?

log2(4096) => 12 bits

Offset of our data within the page
What does the VPN tell us? Offset of our PTE in the page table
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Address Translation With a Page Table

Page table 
base register

Valid Physical page number (PPN)
Page table 

Physical page table 
address for the current
process

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address
0p-1pn-1
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table 
base register

Page table 

Physical page table 
address for the current
process

0p-1pn-1
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table 
base register

Page table 

Physical page table 
address for the current
process

0p-1pn-1
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table 
base register

Page table 

Physical page table 
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

What do we do on a page fault? Page fault exception handler
reads physical page from disk
and updates PTE for this VA.
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table 
base register

Page table 

Physical page table 
address for the current
process

0p-1pn-1
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Valid Physical page number (PPN)

Page table 
base register

Page table 

Physical page table 
address for the current
process

0p-1pn-1

Valid bit = 1
Hit!!!

What does a hit mean?

Physical page number (PPN)

The PTE contains the PPN.
No. A physical address consists of a 
PPN and a PPO. We still need the PPO…

Are we done?
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table 
base register

Page table 

Physical page table 
address for the current
process

0p-1pn-1

Physical page number (PPN)

Valid bit = 1,
PTE has PPN

Physical page number (PPN)

0p-1pm-1

Physical page offset (PPO)

PPO = VPO!
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Putting it all together: Address Translation

MMU Cache/
Memory

CPU

CPU Chip

¢ The CPU generates a request for a virtual address
¢ The MMU drives the page translation
¢ Let’s explore the interaction between the CPU, MMU, and 

Cache/memory on:
§ A page table hit
§ A page fault (miss)
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU Cache/
MemoryPA

Data

CPU

CPU Chip PTE Addr.
PTE

VA
1

2

3

4

5

Page hit 
handled 

entirely by 
hardware!
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim PTE (and, if dirty, swaps it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process. Original process restarts faulting instruction

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PTE Addr.
2

PTE

3

4

5

Disk

Page fault handler
(software, in OS kernel)

Victim page

New page

Exception

6

7

Restarted 
instruction 
should now 

hit.
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Practice on Your Own

¢ Suppose a system uses 2048B sized pages and addresses are 
specified using 32 bits.  How many PTEs would be needed in the 
page table for a process?  How many bits would be need to 
specify the virtual page offset (i.e., which byte in the page is 
being accessed)?
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SRAM
Cache

DRAM
Memory

Digging Deeper: Integrating VM and Caching

Cache/
Memory

CPU MMU
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Integrating VM and Cache: “The players”

CPU MMU L1 Cache Memory
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Integrating VM and Cache: “The game”

CPU MMU
VA

PTEA

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA 
hit

Data

PA 
hit

PTEA

Data

PTE

L1
cache

VA: virtual address, PA: physical address, 
PTE: page table entry, PTEA = PTE address

Address Translation

Data transfer

Data transfer depends on address translation
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Integrating VM and Cache

CPU MMUVA

PTE Addr.

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA 
hit

Data

PA 
hit

PTEA

Data

PTE

L1
cache

VA: virtual address, PA: physical address, 
PTE: page table entry, PTEA = PTE address

Fast case: Target PTE is cached
  - on a PTE hit, no need to go
    to slow DRAM to resolve
    address
(may still need to for data)
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Integrating VM and Cache

CPU MMUVA

PTE Addr.

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA 
hit

Data

PA 
hit

PTEA

Data

PTE

L1
cache

Slow case: Target PTE is not in SRAM
 - Need to go to slow DRAM 
   even before we consider
   our data request
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Integrating VM and Cache

CPU MMU
VA

PTEA

PA
Memory

PAPA
miss

PTEA
miss

PTE

PTEA 
hit

Data

PA 
hit

PTEA

Data

PTE

L1
cache

VA: virtual address, PA: physical address, 
PTE: page table entry, PTEA = PTE address

Insight 1: Cache can hold page table entries, like any 
other data word!
Insight 2: Address translation happens BEFORE 
cache lookup.
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Speeding up Translation with a TLB

¢ Problem: Page table entries (PTEs) are cached in L1 like 
any other memory word
§ PTEs may be evicted by other data references
§ Even a PTE hit pays a small L1 delay

¢ Solution: Translation Lookaside Buffer (TLB)
§ Small set-associative hardware cache in MMU (part of CPU chip)
§ Maps virtual page numbers to  physical page numbers
§ Contains complete page table entries for a small number of pages
§ Each cache line holds one block consisting of a single PTE

Similar to Instruction and Data cache separation.
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Accessing the TLB

¢ MMU uses the VPN portion of the virtual address to access 
the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+s-1p+s

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet S-1

S = 2s sets

TLBI selects the set
(as we did in Ch 6)

TLBT matches tag 
of line within set
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Accessing the TLB

¢ MMU uses the VPN portion of the virtual address to access 
the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+s-1p+s

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet S-1

S = 2s sets

PPN PPO
Physical Address
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TLB Hit

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates a memory access.
All steps in address translation happen inside MMU and are fast. 

TLB

2

VPN

PTE

3
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TLB Miss

MMU Cache/
MemoryPA

Data

CPU

CPU Chip

PTE

VA
1

5

6

TLB

2

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE).
Fortunately, TLB misses are rare. Thanks, locality!
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TLB Fun Facts

¢ May have separate instruction and data TLBs
¢ May have multiple levels of TLBs
¢ Who loads the TLB with entries?

§ Hardware-managed: 
§ Page table walkers walk page table and update TLB

§ Software-managed TLB:
§ On TLB miss, OS walks page tables and loads TLB
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Practice on Your Own

¢ How many times might a TLB need to be accessed when 
executing a single instruction (from fetch to write back)?
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Page Table Structure

¢ Recall: A control register (CR3) holds the starting address of a 
process’s page table
§ How big is a process’s page table?

§ Size of a PTE (what is stored)?
§ Number of PTEs?

§ How big is a process’s working set (roughly speaking)?
§ Stack size?
§ Heap size?
§ Code/text?

¢ Observations:
§ Page table is HUGE, but sparsely populated

¢ What data structures might we use to represent our page table?
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Multi-Level Page Tables: Concrete Example
¢ Suppose:

§ 4KB (212) page size, 48-bit address space, 8-byte PTE 

¢ Problem?
§ Would need a 512 GB page table!

§ 248 / 212 = 236 = # entries in page table
§ 23 bytes per entry
§ 248 * 2-12  * 23 = 239 bytes in every page table

¢ Common solution: Multi-level page tables
§ No need to waste space for unallocated pages!

¢ Example: 2-level page table
§ Level 1 table: each PTE points to a page table (always 

memory resident)
§ Level 2 table: each PTE points to a page 

(paged in and out like any other data)

Level 1
Table

...

Level 2
Tables

...
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs
(232 = 4GB = 1024 x 4MB)

Each PTE 
maps a 

4MB
chunk of 

VAS

Each PTE 
maps a 4KB

chunk of 
VAS
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Translating with a k-level Page Table

Page table 
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

TLB caches 
PTEs from all 

levels
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Address Translation Summary (Ch 9.6)

¢ Programmer’s view of virtual memory:
§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

¢ System’s view of virtual memory:
§ Uses memory efficiently by caching virtual memory pages

§ Efficient only because of locality
§ Simplifies memory management and programming
§ Simplifies protection by providing a convenient inter-

positioning point to check permissions


