
1

Caches (cont.)

CSCI 237: Computer Organization
29th Lecture, Friday, November 15, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ Read CSAPP 6.4-6.6
¢ Quiz due at 2:30pm today
¢ Lab #5 due Tuesday at 11pm
¢ Watch short video before Monday
¢ Colloquium on Friday at 2:35pm

§ Subhadeep Sarkar, Brandeis University
§ Building Deletion-Compliant Data Systems

3

Last Time

¢ Cache memory organization and operation (Ch 6.4)
¢ Caches in real systems
¢ Performance impact of caches
§ The memory mountain

4

Today

¢ Cache memory organization and operation (Ch 6.4)
¢ Caches in real systems
¢ Performance impact of caches
§ The memory mountain

5

What about writes?
¢ Challenge: Multiple copies of data exist throughout hierarchy.

§ L1, L2, L3, Main Memory, Disk

¢ Policy: What to do on a write-hit?
§ Write-through (write immediately to memory)
§ Write-back (defer write to memory until replacement of line)

§ Need a “dirty bit” (is the line different from memory or not)

¢ What to do on a write-miss?
§ Write-allocate (load existing line into cache, update line in cache)

§ Good if more writes to the location follow
§ No-write-allocate (writes straight to memory, does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate (most inline with current trends)

11

Now that we’ve discussed how caches work

¢ How do caches exploit temporal locality?

¢ How do caches exploit spatial locality?

¢ What is the benefit of increasing set associativity?

¢ What is the disadvantage of increasing set associativity?

12

Today

¢ Cache memory organization and operation (Ch 6.4)
¢ Caches in real systems
¢ Practice Problem in Pairs
¢ Performance impact of caches

§ The memory mountain

13

How are real L1/L2/L3 caches organized?

¢ We often create separate caches for code and data
§ Why?

¢ CPUs with multiple cores often have private and shared caches
§ Smaller caches on each core (e.g., L1 and L2)
§ Larger caches shared by whole CPU (e.g., L3)

14

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

15

Example: Core i7 L1 Data Cache

B =
S = , s =
E = , e =
C =

Block offset: . bits
Set index: . bits
Tag: . bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??
Set index: 0x??
Tag: 0x??

32 kB 8-way set associative
64 bytes/block
47 bit address range

16

Example: Core i7 L1 Data Cache

B =
S = , s =
E = , e =
C =

Blocks in cache: C / B
Blocks in cache: 32 * 1024 / 64 = 512

32 kB 8-way set associative
64 bytes/block
47 bit address range

17

Example: Core i7 L1 Data Cache

B =
S = , s =
E = , e =
C =

Blocks in cache: C / B
Blocks in cache: 32 * 1024 / 64 = 512
Sets in cache: (Blocks in cache) / E
Sets in cache: (C / B) / E
Sets in cache: 512 / 8 = 64

32 kB 8-way set associative
64 bytes/block
47 bit address range

18

Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset: 6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x10
Set index: 0x0
Tag: 0x7f7262a1e

32 kB 8-way set associative
64 bytes/block
47 bit address range

0000 0001 0000

19

Lab #5

Write a configurable cache simulator in C
§ Inputs:

§ s, E, b
§ Address trace

§ Create data structures to store meta data for specified cache configuration
§ Not actually storing the data block that stores application data

§ Read every address
§ Determine if hit/miss in cache
§ Update cache’s meta data for this access

§ Print statistics about miss rates

20

Practice On Your Own

¢ Suppose a cache’s capacity C = 32 KB (1 KB = 1024 Bytes) and its
block size B = 64 B. Suppose addresses are specified in 32 bits.

¢ If the cache is direct mapped, how many bits would be used for
the tag, set index, and block offset bits?

¢ If the cache is 4-way set associative, how many bits would be
used for the tag, set index, and block offset bits?

22

Today

¢ Cache memory organization and operation (Ch 6.4)
¢ Caches in real systems
¢ Performance impact of caches
§ The memory mountain

23

Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycles for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ typically 50-200 cycles for main memory (Trend: increasing!)

24

Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

§ Average access time:
 97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
 99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”

25

Writing Cache Friendly Code

¢ Make the common case go fast
§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

26

The Memory Mountain

¢ Read throughput (read bandwidth)
§ Number of bytes read from memory per second (MB/s)

¢ Memory mountain: Measured read throughput as a function of
spatial and temporal locality.
§ Compact way to characterize memory system performance.

27

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of
 * array "data" with stride of "stride", using
 * using 4x4 loop unrolling.
 */
int test(int elems, int stride) {
 long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
 long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
 long length = elems, limit = length - sx4;

 /* Combine 4 elements at a time */
 for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];
acc1 = acc1 + data[i+stride];
acc2 = acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
 for (; i < length; i++) {

acc0 = acc0 + data[i];
}

 return ((acc0 + acc1) + (acc2 + acc3));
}

Call test() with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and
measure the read
throughput(MB/s)

mountain/mountain.c

28

128m
32m

8m
2m

512k
128k

32k
0

4000

8000

12000

16000

20000

24000

28000

32000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

The Memory Mountain

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

29

0

5000

10000

15000

20000

25000

30000

12
8m 64

m
32
m

16
m 8m 4m 2m

10
24
k
51
2k

25
6k

12
8k 64

k
32
k

16
k

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Working set size (bytes)

Cache Capacity Effects from
Memory Mountain

Core i7 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slice through
memory
mountain with
stride=8

L1L2L3Main
Memory

30

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B/
se
c

Throughput for size = 128K

Measured

Cache Block Size Effects from
Memory Mountain

Core i7 Haswell
2.26 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Miss rate = s/8

Miss rate = 1.0

Stride s

31

Writing Cache Friendly Code

¢ Decrease size of working set
§ Reduce individual element size by using smaller type

§ Use a short instead of an int if values fit in 2 bytes
§ Reduce wasted space in structs due to alignment

¢ Nest loops in an order that improves spatial locality when
accessing array elements

¢ Combine parallel arrays into single arrays of structs

int array1[1000;
int array2[1000];

struct combined{
 int element1;
 int element2;
};
struct combined array[1000];

32

Writing Cache Friendly Code (cont.)

¢ Reorganize computation to access subsets of arrays that fit into
caches
§ Blocking

§ Ex. Matrix multiplication with large matrices

33

Practice on your own

¢ Suppose a cache has S=4 sets, a set associativity E = 2, and a
block size B = 4 B. For the following addresses specified with 8
bits each, determine whether they hit or miss in the cache and
determine the final state of the cache (tag bits and memory
addresses stored in each cache block).
§ 0x22
§ 0x17
§ 0x75
§ 0x15
§ 0x26
§ 0x1E
§ 0x10
§ 0x24

