Caches (cont.)

CSCI 237: Computer Organization
29t Lecture, Friday, November 15, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition 1

Administrative Details

m Read CSAPP 6.4-6.6

m Quiz due at 2:30pm today

m Lab #5 due Tuesday at 11pm

m Watch short video before Monday
m Colloquium on Friday at 2:35pm

= Subhadeep Sarkar, Brandeis University
* Building Deletion-Compliant Data Systems

Last Time

m Cache memory organization and operation (Ch 6.4)
m Caches in real systems

m Performance impact of caches
®" The memory mountain

Today

m Cache memory organization and operation (Ch 6.4)
m Caches in real systems

m Performance impact of caches
* The memory mountain

I
What about writes?

m Challenge: Multiple copies of data exist throughout hierarchy.
= L1, L2, L3, Main Memory, Disk

m Policy: What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a “dirty bit” (is the line different from memory or not)

= What to do on a write-miss?
= Write-allocate (load existing line into cache, update line in cache)
= Good if more writes to the location follow

" No-write-allocate (writes straight to memory, does not load into cache)

» Typical
= Write-through + No-write-allocate
= Werite-back + Write-allocate (most inline with current trends)

Now that we’ve discussed how caches work

m How do caches exploit temporal locality?
m How do caches exploit spatial locality?
m What is the benefit of increasing set associativity?

m What is the disadvantage of increasing set associativity?

11

Today

m Cache memory organization and operation (Ch 6.4)
m Caches in real systems

m Practice Problem in Pairs
m Performance impact of caches

® The memory mountain

12

How are real L1/L2/L3 caches organized?

m We often create separate caches for code and data
= Why?
m CPUs with multiple cores often have private and shared caches

= Smaller caches on each core (e.g., L1 and L2)
= Larger caches shared by whole CPU (e.g., L3)

13

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R 32 KB, 8-way,
Regs €8s Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,

Access: 10 cycles

L2 unified cache L2 unified cache

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

14

Example: Core i7 L1 Data Cache

\
2
&
WA
L. E = 2¢ lines per set Q\e’+ 000 @\o
32 kB 8-way set associative e = ~ 0 T0 10000
64 bytes/block I | oeee [. é % 882(1)
47 bit address range | I By 3 [3 [0011
4 | 4 | 0100
S=Zssets< I ” Ioooo: 5 5 0101
= 6 | 6 | 0110
S_ S_ 00 000000 0000OC0FOCFOGNOGONOGOOOOGOONONONOINOIOIO 7 7 0111
- 4 - o0 oo 8 8 1000
- e= q J Qi — 9 | 9 | 1001
’ A |10 1010
C= Cache size: B [11]1011
,,,,,,, - C =S x E x Bdata bytes C |12 | 1100
[v] [e] [o]2]2] .- o1] > T13 1101
I;b' ~— E |14 | 1110
valid bit F (15| 1111
Address of word:
t bits s bits | b bits
tag set block
index offset Stack Address: Block offset: 0x??
0x00007£f7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??

Set index: . bits
Tag: . bits

15

Example: Core i7 L1 Data Cache \

e e E = 2¢ lines per set Q@+ 000 e\o
32 kB 8-way set associative - A . A

64 bytes/block ([I----lZI\/H:t

I
47 bit address range | I B
| |] N

~ || | e

C= Cache size:
I_Trll we | [o]1]2] [61] C =S x E x Bdata bytes
|

S = 25 sets <

— 7
—~

= EH(O(Q|W| oo oy ul|&(wNRk o

valid bit

e e
i S S S R R G B PN LS
=
o
'—l
o

Blocks in cache: C/B
Blocks in cache: 32*1024 /64 =512

16

Example: Core i7 L1 Data Cache

N
>
& 0
N0
L. E = 2¢ lines per set Q\°+ 000 @\o
32 kB 8-way set associative e = ~ 0 T 0 10000
64 bytes/block I [CEERY IR é % 882(1)
47 bit address range | I By 3 [3 [0011
4 [4 0100
S=2setsq | | eeee [1 5 | 5 | 0101
= 6 | 6 | 0110
S _ S _ 00 000 00000OC0OCFOCGOGOONOGOONONONONONOGIO 7 7 0111
= ,S8= . 8 | 8 | 1000
= a= - J G — 9 [9 [1001
’ A (101010
C= Cache size: B [11]1011
,,,,,,, - C =S x E x Bdata bytes C |12 | 1100
(] Cooe] [o[o[e[-—-]o1] ¢ 1z 1199
i — E |14] 1110
vana ! F |15 [1111
Blocks in cache: C/B
Blocks in cache: 32*1024 /64 =512
Sets in cache: (Blocks in cache) / E
Sets in cache: (c/B)/E

Sets in cache: 512 /8 =64

17

Example: Core i7 L1 Data Cache

\
>
& 0
.. E = 2¢ lines per set Q\e’.‘. 000\6\00
32 kB 8-way set associative s = ~ 0 70 10000
64 bytes/block I | CEERY IR é % 882(1)
47 bit address range | I By 313 82(1)(1)
4 | 4
_ S=2sets{ | |) 5[5 | 0101
B=64 6 | 6 | 0110
S = 64’ S = 6 7 7 0111
o000 8 8 1000
E=8,e=3 . J I E— 9 [9 [1001
A |10 1010
C = 64 X 64 X 8 = 32’768 Cache size: B 11 1011
— 1 ol2l2] - C =S x E x Bdata bytes C |12 | 1100
[v] [] [o]s]2] -]o1] > T13 11101
I_(Lb_ — E |14 | 1110
valid bit F |15 1111
Address of word:
t bits s bits | b bits
W_W_M/
tag set block Stack Address: Block offset: 0x10
index offset tac ress: oc' offset: X
0x00007£f7262al1le010 Set index: 0x0

Block offset: 6 bits Tag: O0x7£f7262ale
Set index: 6 bits

Tag: 35 bits 0000 0001 o0O0OO

18

I
Lab #5

Write a configurable cache simulator in C

" |Inputs:
=S, E b
= Address trace

= Create data structures to store meta data for specified cache configuration
= Not actually storing the data block that stores application data

" Read every address
= Determine if hit/miss in cache
= Update cache’s meta data for this access

" Print statistics about miss rates

19

Practice On Your Own

m Suppose a cache’s capacity C =32 KB (1 KB = 1024 Bytes) and its
block size B = 64 B. Suppose addresses are specified in 32 bits.

m If the cache is direct mapped, how many bits would be used for
the tag, set index, and block offset bits?

m If the cache is 4-way set associative, how many bits would be
used for the tag, set index, and block offset bits?

20

Today

m Cache memory organization and operation (Ch 6.4)
m Caches in real systems

m Performance impact of caches
*" The memory mountain

22

Cache Performance Metrics

m Miss Rate

= Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate

= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
* Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycles for L1
= 10 clock cycles for L2
m Miss Penalty

= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

23

Let’s think about those numbers

» Huge difference between a hit and a miss

® Could be 100x, if just L1 and main memory

= Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

24

-
Writing Cache Friendly Code

m Make the common case go fast

" Focus on the inner loops of the core functions

= Minimize the misses in the inner loops
" Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

25

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

= Memory mountain: Measured read throughput as a function of
spatial and temporal locality.

= Compact way to characterize memory system performance.

26

]
Memory Mountain Test Function

long data[MAXELEMS] ;

/* Global array to traverse */

/* test - Iterate over first "elems" elements of

*
*

*/

int test(int elems,

array '"data" with stride of "stride", using
using 4x4 loop unrolling.

int stride) {

Call test () with many
combinations of elems
and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long acc0 = 0, accl = 0, acec2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */

1. Call test() once to

for (i = 0; 1 < limit; i += sx4) {
acc0 = accO + datal[i]; warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + datal[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read

}

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + data[i];

}

return ((accO0 + accl) + (acc2 + acc3));

mountain/mountain.c

throughput(MB/s)

27

The Memory Mountain

Aggressive
prefetching

Slopes

of spatial
locality

Read throughput (MB/s)

32000

28000

N
S
o
o
o

Core i5 Haswell
3.1 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Ridges

= 512k
L 2m
Size (bytes)

Stride (x8 bytes)S7 M em

of temporal
locality

28

[] . II

Cache Capacity Effects from Core i7 Haswe

3.1 GHz
1 32 KB L1 d-cache

Memory Mountain Oy L cach

8 MB L3 cache
30000 64 B block size
25000

0

nézoooo

H Main

5, 15000 13 12 L1 .

o Memory Slice through

e

§ 10000 H emory

2 mountain with
stride=8

5000 mi Em = 1
0:....."""'
< qc/b(Q Q)b‘é\ ‘bq/((\ '\co((\ cb((\ b‘é\ (1/6\ \Qq/b\‘j‘" b,\"l\/" (ﬁo"c\){" \(13)\17 cob\&j“ ,b‘l‘,’*‘ S

Working set size (bytes)

29

Cache Block Size Effects from
Memory Mountain

Throughput for size = 128K

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000
30000 /\
\Miss rate = s/8

25000 \/\
9 20000 \ Missrate=1.0
~
[2a) =(=easured
= 15000 A

/l
10000
5000
0
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides

30

Writing Cache Friendly Code

m Decrease size of working set
* Reduce individual element size by using smaller type
= Use a short instead of an int if values fit in 2 bytes
" Reduce wasted space in structs due to alignment

m Nest loops in an order that improves spatial locality when
accessing array elements

m Combine parallel arrays into single arrays of structs

int arrayl[1000; struct combined({
int array2[1000]; int elementl;
int element2;
};
struct combined array[1000];

AN

Writing Cache Friendly Code (cont.)

m Reorganize computation to access subsets of arrays that fit into
caches
= Blocking
= Ex. Matrix multiplication with large matrices

32

Practice on your own

m Suppose a cache has S=4 sets, a set associativity E =2, and a
block size B =4 B. For the following addresses specified with 8
bits each, determine whether they hit or miss in the cache and
determine the final state of the cache (tag bits and memory
addresses stored in each cache block).
= 0x22
= 0Ox17
= 0x75
= 0x15
= 0x26
= Ox1E
= 0x10
= 0Ox24

33

