
1

1

Exceptions and the Memory Hierarchy

CSCI 237: Computer Organization
26th Lecture, Friday, November 7, 2025

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Lab #5 checkpoint due Tuesday at 11pm
¢ Read CSAPP 6.2-6.4
¢ Apply to be a TA by TODAY!

2

3

Last Time: The Y86 Pipelined Datapath

¢ Construction of a pipelined datapath for Y86
§ Control hazards

§ Branch prediction
§ Exceptions

3
4

Today: Exceptions and Storage

¢ Construction of a pipelined datapath for Y86
§ Exceptions

¢ Storage technologies and trends (Ch 6.1)
§ Memory technologies

¢The memory hierarchy (Ch 6.3)
¢Locality of reference (Ch 6.2)

4

2

5

Exceptions in Pipeline Processor #1

¢ Desired Behavior
§ rmmovq should cause exception
§ Following instructions should have no effect on processor state

irmovq $100,%rax
 rmmovq %rax,0x10000(%rax) # Invalid address
 nop
 .byte 0xFF # Invalid instruction code

0x000: irmovq $100,%rax

1 2 3 4

F D E M
F D E0x00a: rmmovq %rax,0x10000(%rax)

0x014: nop
0x015: .byte 0xFF

F D
F

W
5

M
E
D

Exception
detected

Exception
detected

5
6

Exceptions in Pipeline Processor #2

¢ Desired Behavior
§ No exception should occur

0x000: xorq %rax,%rax # Set condition codes
 0x002: jne t # Not taken
 0x00b: irmovq $1,%rax
 0x015: irmovq $2,%rdx
 0x01f: halt
 0x020: t: .byte 0xFF # Target

0x000: xorq %rax,%rax

1 2 3

F D E
F D0x002: jne t

0x020: t: .byte 0xFF
0x???: (I’m lost!)

F

Exception
detected

0x00b: irmovq $1,%rax

4

M
E

F
D

W
5

M

D
F

E
M
E

W

7

W
M

8

W

9

E
D

M

6

W

6

7

Maintaining Exception Ordering

§ Add status field to pipeline registers
§ Pass through value from last stage or set if exception detected in stage
§ Values in Y86-64: ”AOK”, “ADR” (when bad fetch address), “HLT” (halt

instruction) or “INS” (illegal instruction)
§ Exception triggered only when instruction hits write back

F predPC

W icode valE valM dstE dstMstat

M Cndicode valE valA dstE dstMstat

E icode ifun valC valA valB dstE dstM srcA srcBstat

D rB valC valPicode ifun rAstat

7
8

Side Effects in Pipeline Processor

¢ Desired Behavior
§ rmmovq should cause exception
§ No following instruction should have any effect

irmovq $100,%rax
 rmmovq %rax,0x10000(%rax) # invalid address
 addq %rax,%rax # Sets condition codes

0x000: irmovq $100,%rax

1 2 3 4

F D E M
F D E0x00a: rmmovq %rax,0x1000(%rax)

0x014: addq %rax,%rax F D

W
5

M
E

Exception
detected

Condition
code set

8

3

9

Avoiding Side Effects
¢ Presence of Exception Should Disable State Update
§ Invalid instructions are converted to pipeline bubbles

§ Except have stat indicating exception status
§ Data memory will not write to invalid address
§ Prevent invalid update of condition codes

§ Detect exception in memory stage
§ Disable condition code setting in execute
§ Must happen in same clock cycle

§ Handling exception in final stages
§ When detect exception in memory stage

– Start injecting bubbles into memory stage on next cycle
§ When detect exception in write-back stage

– Stall excepting instruction

9
11

Rest of Real-Life Exception Handling

¢ Call Exception Handler
§ Push PC onto stack

§ Either PC of faulting instruction or of next instruction
§ Usually pass through pipeline along with exception status

§ Jump to handler address
§ Usually fixed address
§ Defined as part of ISA

11

12

Practice on Your Own

¢ When we talk about the performance of a pipelined datapath,
we talk about CPI, or Cycles Per Instruction, which is the number
of cycles it takes to complete each instruction on average.
Ideally, CPI=1. Suppose that 20% of our instructions were
control instructions and that we mispredicted the target of these
control instructions 10% of the time, causing a two wasted cycles
(stall cycles) on each misprediction. Assume all other
instructions have a CPI of 1. What would be the CPI for this
system?

12
13

Practice In Class

¢ Pipeline: Fetch, Decode, Ex1, Ex2, Mem1, Mem2, Writeback
¢ Data forwarding used between Mem2 and Ex1 and between Ex2 and Ex1

§ Also between Mem1 and Ex1

¢ Control instructions don’t determine the next instruction until end of Ex2

¢ The pipeline uses predict-not-taken branch prediction scheme

1. irmovq $1, %rsi
2. mrmovq (%rdi), %r8
3. irmovq $4, %r9
4. subq %r8, %r9
5. jne L1 # taken
6. addq %rsi, %rax
7. L1: rmmovq %r8, 8(%rdi)
8. addq %r8, %rax

13

4

14

Practice in Class

¢ Figure out RAW dependences that require stalling
¢ Figure out controls due to control.

1. irmovq $1, %rsi
2. mrmovq (%rdi), %r8
3. irmovq $4, %r9
4. subq %r8, %r9
5. jne L1 # taken
6. addq %rsi, %rax
7. L1: rmmovq %r8, 8(%rdi)
8. addq %r8, %rax

14
15

Practice in Class

15

17

Today: Exceptions and Storage

¢ Construction of a pipelined datapath for Y86
§ Exceptions

¢ Storage technologies and trends (Ch 6.1)
§ Memory technologies

¢The memory hierarchy (Ch 6.3)
¢Locality of reference (Ch 6.2)

17
18

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
($ per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

L2 cache
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
more expensive
($ per byte)
storage
devices L3 cache

(SRAM)

L6:

18

5

19

Nonvolatile Memories
¢ DRAM and SRAM are volatile memories
§ Lose information if powered off

¢ Nonvolatile memories retain value even if powered off
§ Read-only memory (ROM): programmed during production
§ Programmable ROM (PROM): can be programmed once
§ Eraseable PROM (EPROM): can be bulk erased w/ UV light
§ Electrically eraseable PROM (EEPROM): electronic erase capability
§ Flash memory: EEPROMs. with partial (block-level) erase capability

§ Wears out after about 100,000 erasings
¢ Uses for Nonvolatile Memories
§ Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)
§ Solid state disks (replace rotating disks in thumb drives, smart phones,

mp3 players, tablets, laptops,…)
§ Disk caches

19
20

Traditional Bus Structure Connecting
CPU and Memory
¢ A bus is a collection of parallel wires that carry address, data,

and control signals.
¢ Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Contains memory controller

20

21

Memory Read Transaction (1)

¢ CPU places memory address A on the memory bus.

ALU

Register file

Bus interface
A 0

Ax

I/O bridge

%rax

Load operation: movq A, %rax

Main
memory

21
22

Memory Read Transaction (2)

¢ Main memory reads A from the memory bus, retrieves word x,
and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

22

6

23

Memory Read Transaction (3)

¢ CPU reads word x from the bus and copies it into register %rax.

x
ALU

Register file

Bus interface x

0

A

%rax

I/O bridge

Load operation: movq A, %rax

Main
memory

23
24

Memory Write Transaction (1)

¢ CPU places address A on bus. Main memory reads it and waits
for the corresponding data word to arrive.

y
ALU

Register file

Bus interface
A 0

A

%rax

I/O bridge

Store operation: movq %rax, A

Main
memory

24

25

Memory Write Transaction (2)

¢ CPU places data word y on the bus.

y
ALU

Register file

Bus interface
y 0

A

%rax

I/O bridge

Store operation: movq %rax, A

Main
memory

25
26

Memory Write Transaction (3)

¢ Main memory reads data word y from the bus and stores it at
address A.

y
ALU

Register file

Bus interface y

0

A

%rax

I/O bridge

Store operation: movq %rax, A

Main
memory

26

7

27

Today: Exceptions and Storage

¢ Construction of a pipelined datapath for Y86
§ Exceptions

¢ Storage technologies and trends (Ch 6.1)
§ Memory technologies

¢The memory hierarchy (Ch 6.3)
¢Locality of reference (Ch 6.2)

27
28

Mapping Program Addresses into Memory
Hierarchy

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(e.g., Web servers)

L2 cache
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

L3 cache
(SRAM)

L6:

Stack

Text
Initialized Data

Uninitialized Data
(Heap)

0x0

0x7fffffff

Reserved

0x1000000
0x40000

Virtual address space Memory hierarchy

28

29

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
($ per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

The ways that we interact
with storage hardware has a
huge impact on program
performance.

L2 cache
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
more expensive
($ per byte)
storage
devices L3 cache

(SRAM)

L6:

Storage hardware has
different speeds, costs ($),
and granularities of access.

We will briefly discuss the
different hardware types
and properties.

Then we will discuss
caching, and once we
understand how caches
work, we will discuss how to
write cache-efficient code.

drat

29

