Administrative Details

m Lab #5 checkpoint due Tuesday at 11pm
= Read CSAPP 6.2-6.4

Exceptions and the Memory Hierarchy = Apply to be a TA by TODAY!

CSCl 237: Computer Organization
26t Lecture, Friday, November 7, 2025

Kelly Shaw
1 2
| |
Last Time: The Y86 Pipelined Datapath Today: Exceptions and Storage
m Construction of a pipelined datapath for Y86 m Construction of a pipelined datapath for Y86
= Control hazards = Exceptions
= Branch prediction m Storage technologies and trends (Ch 6.1)
= Exceptions = Memory technologies

mThe memory hierarchy (Ch 6.3)
mLocality of reference (Ch 6.2)

Exceptions in Pipeline Processor #1 Exceptions in Pipeline Processor #2
irmovg $100, $rax 0x000: xorq %$rax,%$rax # Set condition codes
rmmovqg %rax,0x10000 ($rax) # Invalid address 0x002: jne t # Not taken
nop 0x00b: irmovg $1, %rax
.byte OxFF # Invalid instruction code 0x015: irmovqg $2,%rdx
0x01f: halt
0x020: t: .byte OxFF # Target
12 3 4 5
0x000: irmovg $100,%rax [FID[E[M[W Exception ! 3 4 5 6 7 8 9
0x00a: rmmovq %$rax,0x10000(%rax) |F [D|[E [M detected 0x000: xorq srax,%rax [F [D[E[M[W
0x014: nop FIDI|E 0x002: jne t FIDIE[M[W
0x015: .byte OxFF FLD 0x020: t: .byte OxFF FID|IE|IMI|W
. 0x???: (I'm lost!) FIDIEIM|W
E;(Cfpttlog 0x00b: irmovg $1,%rax FIDIE|M W‘
etecte .
m Desired Behavior Exception
* rmmovq should cause exception m Desired Behavior detected
= Following instructions should have no effect on processor state " No exception should occur
5 6
5 6
S — e —
Maintaining Exception Ordering Side Effects in Pipeline Processor
valE valM dstE |dstM
‘ - ‘ - irmovg $100, $rax
valE ‘ valA -dsts‘dstm- rmmovq $rax, 0x10000 (rax) # invalid address
addg %rax, $rax # Sets condition codes
|code‘ ifun - valC ‘ valA ‘ valB ‘dstE‘dstM‘srcA‘sch‘
icode‘ ifun - A ‘ B ‘ valC ‘ valP _ 1 2 3 4 5
0x000: irmovg $100,%rax [FID]E [M W | Exception
0x00a: rmmovq %rax,0x1000 ($rax) FIDI|E|M detected
= Add status field to pipeline registers 0x014: addq %rax, srax FIDIE
= Pass through value from last stage or set if exception detected in stage
= Values in Y86-64: "AOK”, “ADR” (when bad fetch address), “HLT” (halt Condition
instruction) or “INS” (illegal instruction) = Desired Behavior code set
" Exception triggered only when instruction hits write back .
= rmmovq should cause exception
" No following instruction should have any effect
7 8

Avoiding Side Effects

m Presence of Exception Should Disable State Update
® Invalid instructions are converted to pipeline bubbles
= Except have stat indicating exception status
= Data memory will not write to invalid address
" Prevent invalid update of condition codes
= Detect exception in memory stage
= Disable condition code setting in execute
= Must happen in same clock cycle
= Handling exception in final stages
= When detect exception in memory stage
— Start injecting bubbles into memory stage on next cycle
= When detect exception in write-back stage
— Stall excepting instruction

Practice on Your Own

u When we talk about the performance of a pipelined datapath,
we talk about CPI, or Cycles Per Instruction, which is the number
of cycles it takes to complete each instruction on average.
Ideally, CPI=1. Suppose that 20% of our instructions were
control instructions and that we mispredicted the target of these
control instructions 10% of the time, causing a two wasted cycles
(stall cycles) on each misprediction. Assume all other
instructions have a CPI of 1. What would be the CPI for this
system?

Rest of Real-Life Exception Handling

m Call Exception Handler
= Push PC onto stack
= Either PC of faulting instruction or of next instruction
= Usually pass through pipeline along with exception status
" Jump to handler address
= Usually fixed address
= Defined as part of ISA

11

12

Practice In Class

1 irmovq $1, %rsi

2 mrmovqg (%rdi), %r8

3. irmovq $4, %r9

4, subq %18, %r9

5 jne L1 # taken
6. addq %rsi, %rax

7. L1:rmmovq %r8, 8(%rdi)

8 addq %r8, %rax

m Pipeline: Fetch, Decode, Ex1, Ex2, Mem1, Mem2, Writeback
m Data forwarding used between Mem?2 and Ex1 and between Ex2 and Ex1

= Also between Mem1 and Ex1

m Control instructions don’t determine the next instruction until end of Ex2

u The pipeline uses predict-not-taken branch prediction scheme

13

Practice in Class Practice in Class
1. irmovq $1, %rsi
2. mrmovqg (%rdi), %r8 .
3. irmovq $4, %r9 l) (r oY $()0)°(5} pDPED' EEL/ ;L”A‘j—: ::;Bu %mwauﬁ
4. subq %r8, %r9 ermmb Uov"d*);')"g £ B 8 W \mew
5. jne L1 # taken 8 i quq)’),("] £ el B S T2 MW
6. addq %rsi, %rax 4) sb—b% r8, Beq £ > D D @M wJ
7. L1:rmmovq %r8, 8(%rdi) s)\&n& u _ e g Fp» € XX
8. addq %r8, %rax AL Dresiy Tk g D o X -
% %’7}%0‘-') x K
G«)FMW@%) FoX X e
© oddg W ok Foo ot
m Figure out RAW dependences that require stalling & v & @@,,a\J cp €1e
m Figure out controls due to control. @ u&&b % ? /”)oﬁ""
Hone Was 7~
T pod n dass vl thodk
pr\QCN P"'H" beasewn
ML ME\
14 15
14 15
S — e —
Example Memory
Today: Exceptions and Storage Hierarchy 10/ ogs
Smaller,
. . . faster, . L1 cach
m Construction of a pipelined datapath for Y86 a?:der L (sﬁi\cMT
= Exceptions more expensive L2: L2 cache
. (S per byte) ’ (SRAM)
m Storage technologies and trends (Ch 6.1) storage
i devices 13: L3 cache
= Memory technologies G
mThe memory hierarchy (Ch 6.3) Larger,
. slower, L4: Main memory
mLocality of reference (Ch 6.2) and TR
cheaper
($ per byte)
storage L5: Local secondary storage
devices (local disks)
L6: Remote secondary storage
(e.g., Web servers)
17 18

17 18

0 |
Nonvolatile Memories

= DRAM and SRAM are volatile memories
® Lose information if powered off
= Nonvolatile memories retain value even if powered off
= Read-only memory (ROM): programmed during production
" Programmable ROM (PROM): can be programmed once
= Eraseable PROM (EPROM): can be bulk erased w/ UV light
" Electrically eraseable PROM (EEPROM): electronic erase capability
® Flash memory: EEPROMs. with partial (block-level) erase capability
= Wears out after about 100,000 erasings
m Uses for Nonvolatile Memories

® Firmware programs stored in a ROM (BIOS, controllers for disks,
network cards, graphics accelerators, security subsystems,...)

" Solid state disks (replace rotating disks in thumb drives, smart phones,
mp3 players, tablets, laptops,...)

= Disk caches

19

Memory Read Transaction (1)

m CPU places memory address A on the memory bus.

Register file Load operation: movq A, %rax
$rax ALY
Main
iI memory
1/0 bridge 0
A\ |[Obridee | 5

Bus interface W X A

21

|
Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address, data,
and control signals.

m Buses are typically shared by multiple devices.

CPU chip
Contains memory controller
Register file —

ALU

iI || Systembus / Memory bus
Bus interface <: I(O :> Main
bridge memory

20

Memory Read Transaction (2)

= Main memory reads A from the memory bus, retrieves word x,
and places it on the bus.

Register file Load operation: movq A, %$rax
$rax ALY
Main
iI memory
A\ Jobrdes , x 0

Bus interface W X A

22

Memory Read Transaction (3)

m CPU reads word x from the bus and copies it into register %rax.

Register file

—)

ALU

Load operation: movqg A, $rax

¥rax|[—x

Main
memory

—i I O bridge 0
Bus interface <: X A

23

23

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file Store operation: movq %$rax, A
$rax M ALU Mai
] ain
memory

—— 1 [fobrids 4y

Bus interface \J—l/[_,\l—l/ A

Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and waits
for the corresponding data word to arrive.

Register file Store operation: movqg %rax, A
$rax m ALU Main
ﬂ memory
1/0 bridge 0
A N Jfobrdee , 4

Bus interface

N— N/ A

24

25

Memory Write Transaction (3)

= Main memory reads data word y from the bus and stores it at
address A.

Register file Store operation: movq %$rax, A
$rax[_y At .
Main
memory

1L

Bus interface

1/0 bridge 0
¥ A

26

: Mapping Program Addresses into Memor
Today: Exceptions and Storage pping Frog i y

Hierarchy
m Construction of a pipelined datapath for Y86
® Exceptions Ox7fEfeff A
m Storage technologies and trends (Ch 6.1) l
= Memory technologies o L:Z::E:

mThe memory hierarchy (Ch 6.3) ﬁ ‘ v, mh

mLocality of reference (Ch 6.2) y’ i
Uninitialized Data
(Heap) ls/ Local Sﬁ:g;d;;\{(ss)torage
!nitize Data 0X1000000 L6; Remote secondary storage
ext 0x40000 (e.g., Web servers)
0x0
Virtual address space Memory hierarchy

27

27 28

Example Memory
. Storage hardware has

H iera rchy LO: e different speeds, costs ($),
Smaller, and granularities of access.
faster, L1: / Llcache The ways that we interact
and (SRAM) with storage hardware has a
more expensive L2 L2 cache huge impact on program
($ per byte) : (SRAM) performance.
storage We will briefly discuss the
devices L3: L3 cache different hardware types

(SRAM) and properties.
Then we will discuss
Larger, .
slower ™ . caching, and once we
’ ° ry understand how caches

and (DRAM) work, we will discuss how to
cheaper write cache-efficient code.
($ per byte)
storage L5: Local secondary storage
devices (local disks)

L6: Remote secondary storage

(e.g., Web servers)
2

29

