The Y86 Pipelined Datapath: Data and
Control Hazards

CSCl 237: Computer Organization
25th Lecture, Wednesday, November 6, 2024

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition 1

1

Last Time: The Y86 Pipelined Datapath

m Construction of a pipelined datapath for Y86
= Adding pipeline registers
= Data hazards
= Ways to deal with data hazards
= Stalling
= Data forwarding
= Control hazards

|
Administrative Details

m Lab #4 due Thursday at 11pm
= Quiz on Glow open today at 2:35pm, due Friday at 2:35pm
m Read CSAPP 4.6 and 6.1

m Lab #5 partner signup form due today at noon
® You and your partner must fill out the form

Today: The Y86 Pipelined Datapath

m Construction of a pipelined datapath for Y86
= Control hazards
= Branch prediction
= Exceptions

Control Hazard: Stall until target known

In what cycle does the nextPC get calculated for the jne? End of 4

In what cycle does the xorq get fetched? Beginning of 3

cwwsHI>EH
- HEr s I

xorq %r8, %r9

end: addq %rl1, %rl10 .

Time->

Solution: Branch Prediction

Guess which way the branch will go before calculation occurs.

Clean up if predictor is wrong.

addq %r12, %r13

e >nl

xorq %r8, %r9 ﬁ;ﬁ% ﬁ;ﬁ?
subq %r9, %rl3

end: addq %rl11, %r10

Time->

Barriers to Pipeline Performance

m Uneven stages
m Pipeline register delays
m Data Hazards

m Control Hazards

® Whether an instruction will execute depends on the outcome of a control
instruction still in the pipeline

Solution: Branch Prediction

First: Always predict not taken
If we are right, how many cycles do we stall?

et II>
xorq %r8, %r9 .

addq %r12, %r13

subq %r9, %r13

end: addq %rl11, %r10

Time->

Solution: Branch Prediction

First: Always predict not taken
If we are right, how many cycles do we stall? 0

>
e 1T »
xorq %r8, %r9 .

addq %r12, %r13

>
, , i | [ws
subq %r9, %r13 . n .

end: addq %rl1, %rl10

Time->

Solution: Branch Prediction

First: Always predict not taken
If we are wrong, then flush incorrect instruction(s)

How many cycles do we stall?

e [[S FIE]

- 0>
N
xorq %r8, %r9 . > ‘()

subq %r9, %r13

end: addq %rl11, %r10

Time->

Solution: Branch Prediction

First: Always predict not taken
If we are wrong, then flush incorrect instruction(s)

wenos | [S
e [[
xorq %r8, %r9 .

subq %r9, %r13

end: addq %rl1, %rl10

Time->

11

10

Solution: Branch Prediction

First: Always predict not taken
If we are wrong, then flush incorrect instruction(s)

How many cycles do we stall? 2
addq %r12, %r13 . . B . .

jne end

xorq %r8, %r9

subq %r9, %r13

end: addq %rl11, %r10

Time->

12

Branch Prediction

rrmovqg %r8, %rl0 #1i
subg %r9, %rlo0 #i-n
jge end

loop: #do some workif i-n < 0

irmovqg $1, %rll

addg %rll, %r8 Fit+
rrmovqg %r8, %rl0
subg %r9, %rlo0 #i-n
j1 loop #1i-n<0
end:
Is jge often taken or not taken? Not Taken
Is jl often taken or not taken? Taken

Look up prediction by PC

for(i; 1 < n; i++)
//do some work

Conclusion: We want a prediction that is unique to each branch.

Simplest Branch Predictor

Strategy: Predict whatever happened last time,
then update the predictor for next time

Reality: Reality:
TC\‘ Reality: NT 6) NT
—_—
———
Reality: T

If in this state:
Predict Not Taken

If in this state:
Predict Taken

13

Branch Prediction

rrmovqg %r8, %rl0 #1
subg %r9, %rl0 #i-n
jge end

loop: #do some workif i-n < 0

irmovg $1, %rll
addg %rll, %r8 #Fi++
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #i-n<
end:
Iteration 1 2 ..x 1
CurState
Prediction
Reality

NextState

for(i; i<n;i++)
//do some work

Consider two loop
instances for a single

static loop.The state of
the predictor persists
across iterations.

15

14

Branch Prediction

rrmovg %r8, %rl0 #i for(i; i<n;i++)
subg %r9, %rl0 #i-n
jge end

loop: #do some workif i-n < 0

irmovg $1, %rll

addg %rll, $r8 #i++

rrmovqg %r8, %rl0

subg %r9, %rl0 #i-n

jl loop #1-n<0
end:
Iteration 1
CurState 0
Prediction NT
Reality T
NextState 1

2 ...X 1 2.y
1

//do some work

16

Branch Prediction
rrmovqg %r8, %rl0 #1i for (i; i<n;i++)
subg %r9, %rlo0 #i-n //do some work
jge end

loop: #do some workif i-n < 0
irmovg $1, %rll
addg %rll, %r8 Fit+
rrmovqg %r8, %rl0
subg %r9, %rlo0 #i-n
j1 loop #1i-n<0

end:

Iteration 1 2 X 1 2 ...y

CurState 0 1 1

Prediction NT T

Reality T T

NextState 1 1

17
17

Branch Prediction
rrmovqg %r8, %rl0 #1
subg %r9, %rl0 #i-n
jge end
loop: #do some workif i-n < 0
irmovg $1, %rll
addg %rll, %r8 #i++
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #i-n<0
end:
Iteration 1 2 ..x 1 2.y
CurState 0 1 1 0 1
Prediction @ NT T T NT
Reality T T NT T
NextState 1 1 0 1

for (i;

i<n;i++)
//do some work

19

Branch Prediction

rrmovqg %r8, %rl0 #i
subg %r9, %rl0 #i-n
jge end
loop: #do some workif i-n < 0O
irmovg $1, %rll
addq %rll, %r8 #i++
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #i-n<0
end:
Iteration 1 2 1 2.
CurState 0 1 1 0
Prediction NT T T
Reality T T NT
NextState 1 1 0

for (i;

i<n;i++)
//do some work

18

Branch Prediction

rrmovqg %r8, %rl0 #i
subg %r9, %rl0 #i-n

jge end

loop: #do some workif i-n < 0
irmovg $1, %rll
addg %rll, %r8 #i++
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #1-n<0
end:
Iteration 1 2 ...x 1
CurState 0 1 1 0
Prediction NT T T NT
Reality T T NI T
NextState 11 0 1

— a8

for (i;

i<n;i++)
//do some work

20

Branch Prediction

rrmovqg %r8, %rl0 #1i for(i; i<n;i++)
subg %r9, %rlo0 #i-n //do some work
jge end

loop: #do some workif i-n < 0

irmovqg $1, %rll

addg %rll, %r8 #i++
rrmovqg %r8, %rl0 First and last iteration of each loop
subg %r9, %rl0 #i-n
31 loop #1-n<0
end:
Iteration 1 2 ...x 1 2 ...y
CurState 0 1 1 0 1 1
Prediction NT T T NT T T
Reality T T NT T T NT
NextState 1 1 0 1 1 0
21
21

|
High Level Overview: Real Branch Predictors

m Limited space, so different branches may map to the same
predictor
= errors?

m TargetPC saved with predictor

23

High-level Overview: Simplest Branch
Predictors

Branch History Table (BHT)

= Memory indexed by
lower portion of address rc .
m Entry contains few bits S 4
specifying prediction :
m Accessed in IF stage so
fetching of target occurs
in next cycle

22

Branch Prediction

m If we're going to predict taken, we need to know where to

branch to earlier than when we determine where the branch
actually goes.
= How?

24

|
High Level Overview: Branch Target Buffer

(BTB)

4{ PC of branch instruction \
l Look up

No

Yes
If there is a match on PC of branch, corresponding
predicted target instruction address returned

25

25

In Fetch, if hit in BTB, send target
Address to PC register for next cycle

C

R
|

:
-+

(Writeback)

Pipeline Register

27

Real Branch Predictors

m Branch History Table (BHT)
= Stores predictions for individual branch instructions
= Store more than 1 bit to increase prediction accuracy
m Branch Target Buffer (BTB)
" For branches that are predicted taken, stores target address

m Both accessed in FETCH stage on jump instructions

26

Real Branch Predictors

m Branch History Table (BHT)

= Stores predictions for individual branch instructions

= Store more than 1 bit to increase prediction accuracy
m Branch Target Buffer (BTB)

® For branches that are predicted taken, stores target address
m Both accessed in FETCH stage on jump instructions
m Both updated after EXECUTE stage

28

of branch known, update
BHT and BTB

:
o]

In Execute, when direction

(Writeback) ‘:

L ?
Pipelineﬁegister - B

Disadvantages/Limits of Branch Prediction

m Large penalty when wrong
= Badly behaved branches kill performance

m Large amount of chip area used for BTB and BHT
m Non-productive instructions waste energy and dissipate heat

Advantages of Branch Prediction

m Highly predictable branches have no stalls
m Works well with loops.

m All hardware - no compiler necessary

30

|
What about unconditional control instructions?

m call and unconditional Jmp always use target in instruction
" Have to decode the instruction to get those values
= But you could use branch prediction for those as well to prevent stalling
m ret may go back to multiple locations if called from multiple
locations
® Can stall until return address obtained from memory
® Return address prediction can be done via a stack in HW

32

Pipeline Summary

m Concept

" Break instruction execution into 5 stages

® Run instructions through in pipelined mode
m Limitations

® Can’t handle dependencies between instructions when instructions follow
too closely

® Data dependencies
= One instruction writes register, later one reads it
= Control dependencies
= Instruction sets PC in way that pipeline did not predict correctly
m Solutions to hazards other than stalling
= Data hazards
= Data forwarding
= Control hazards

= Branch prediction

33

|
Practice on Your Own

m Draw the pipeline diagram for the following code, assuming
predict not taken but with the reality of the branch specified in
comments

irmovqg $4, %r8
subg %$rdi, %r8
jl end # not taken
mrmovqg (%$rsi), %r9
irmovg $0, %rl0
subg %$rl0, %r9
je end # taken
mrmovqg 8 (%$rsi), %rll
addg %rll, %r9
end:

35

Why Should Programmers Care

m Performance matters
" Lots of branches that aren’t predictable will slow down your code
= Why conditional moves are good
" Lots of data dependences slow down your code too

m In general, compiler and hardware optimizations do a good job

= But, the compiler can’t always determine if there is a true data
dependence when pointers are being used

= Sometimes hardware will mispredict branches and result in wasted cycles

m Sometimes we can restructure our code to make things easier
for the compiler
= Remove unnecessary branches or move them out of loops, link different
cases together (if/else if/else instead of sequence of if statements)
® Loop unrolling
= Make loop bodies longer so more instructions to choose from

34

|
Today: The Y86 Pipelined Datapath

m Construction of a pipelined datapath for Y86

= Exceptions

36

