| |
Administrative Details

m Lab #5 checkpoint due Tuesday at 11pm
= Read CSAPP Ch. 4.6 and 6.1-6.2

Branch Prediction, Exceptions, and = Apply to be a TA by Nov. 7

m Faculty candidate engagement
CSCl 237: Computer Organization
25th Lecture, Wednesday, November 5, 2025

Kelly Shaw
1 2
e —— e ——
. . Today: Branch Prediction, Exceptions, and
Last Time: Overcoming Hazards Y ’ P ’
Storage
m Data Forwarding m Branch Prediction
m Branch Prediction m Exceptions

m Storage technologies and trends (Ch 6.1)
= Memory technologies

Solution: Branch Prediction

First: Always predict not taken
If we are right, how many cycles do we stall? 0

sz (| [TTE 2 I
= F >
xorq %r8, %r9 .

subq %r9, %r13

end: addq %rl1, %rl10

Time->

Solution: Branch Prediction

First: Always predict not taken
If we are wrong, then flush incorrect instruction(s)
How many cycles do we stall? 2

e |][] 5] [
jne et > .
xorq %r8, %r9 .

subq %r9, %r13

end: addq %rl1, %rl10

Time->

Branch Prediction

rrmovqg %r8, %rl0 #i for(i; i < n; i++)
subg %r9, %rl0 #i-n //do some work
jge end

loop: #do some workif i-n < 0

irmovg $1, %rll

addg %rll, %r8 #i++
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #1i-n<0
end:
Is jge often taken or not taken? Not Taken
Is jl often taken or not taken? Taken

Conclusion: We want a prediction that is unique to each branch.

Look up prediction by PC

Simplest Branch Predictor

Strategy: Predict whatever happened last time,
then update the predictor for next time

Reality: Reality:

T C\’ Reality: NT 63 NT

Reality: T

If in this state: If in this state:
Predict Taken Predict Not Taken

Branch Prediction

rrmovqg %r8, %rl0 #1i for(i; i<n;i++)
subg %r9, %rl0 #i-n
jge end

loop: #do some workif i-n < 0

//do some work

Consider two loop
instances for a single
irmovqg $1, %rll

addg %rll, %r8 #i++
rrmovqg %r8, %rl0

subg %r9, %rlo0 #i-n
31 loop #1-n<0

static loop.The state of
the predictor persists
across iterations.

end:

Iteration 1 2 ...x 1 2 ...y
CurState 0

Prediction

Reality

NextState

Branch Prediction

rrmovqg %$r8, %rl0 #i
subg %r9, %rl0 #i-n
jge end

loop: #do some workif i-n < 0O

irmovg $1, %rll

CurState 0 1
Prediction NT
Reality T
NextState 1

Branch Prediction

rrmovg %r8, %rl0 #i for(i; i<n;it+)
subg %r9, %rl0 #i-n //do some work

jge end
loop: #do some workif i-n < 0

irmovg $1, %rll

addq %rll, 8 $iv+
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #1i-n<0
end:
Iteration 1 2 X 1 2.y
CurState 0 1 1
Prediction NT T
Reality T T
NextState 1 1

11

addq %rll, %r8 #i++
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #i-n<0
end:
Iteration 1 2 ... x 1 2

for (i;

i<n;i++)
//do some work

10

Branch Prediction

rrmovqg %r8, %rl0 #i
subg %r9, %rl0 #i-n
jge end

loop: #do some workif i-n < 0

irmovg $1, %rll

for (i;

i<n;i++)
//do some work

addg %rll, $r8 #it+
rrmovqg %r8, %rl0
subg %r9, %rl0 #i-n
jl loop #1-n<0
end:
Iteration 1 2 ...x 1 2.
CurState 0 1 1 0
Prediction NT T T
Reality T T NT
NextState 1 1 0
12
12

Branch Prediction Branch Prediction
rrmovqg %r8, %rl0 #1i for(i; i<n;i++) rrmovqg %$r8, %rl0 #i for (i; i<n;it+)
bg %$r9, %$rl0 i- o o {— ! !
j;eqeng T #i-n //do some work subg %r9, %rl0 #i-n //do some work

jge end

loop: #do some workif i-n < 0 loop: #do some workif i-n < 0

irmovqg $1, %rll

irmovg $1, %$rll
addg %rll, %r8 #i++

addq %rll, %r8 #idt

rrmovq %r8, %rl0 rrmovqg %r8, %rl0

subq %r9, %rl0 #i-n subg %r9, %rl0 #i-n

31 loop #1-n<0 §1 loop #1i-n<0
end: end:
Iteration 1 2 ...x 1 2 ...y Iteration 1 2 ... x 1 2 ...y
CurState 0 1 1 0 1 CurState 0 1 1 0 1 1
Prediction NT T T NT Prediction NT T T NT T
Reality T T NT T Reality T T NT T T
NextState 1 1 0 1 NextState 1 1 0 1 1

13 14
13 14

. High-level Overview: Simplest Branch
Branch Prediction & . P
Predictors
rrmovg %r8, %rl0 #i for(i; i<n;it+)
ubg %r9, %rlo0 #i- wor .
Sae ena ’ //do some work Branch History Table (BHT)
loop: #do some workif i-n < 0 .Memoryindexed by
irmovg $1, $rill When are we wrong????? lower portion of address rc
ifﬁfvf;riié, iilo 1 First and last iteration of each loop m Entry contains few bits V :
subg %r9, %ri0 #i-n specifying prediction
. It looi) #1'1“02 m Accessed in IF stage so
cration e X -y fetching of target occurs
CurState 0 1 1 0o 1 1 in next cycle
Prediction NT T T NT T T
Reality T T NT T T NT
NextState 1 1 0 1 1 0

15 16

High Level Overview: Real Branch Predictors

m Limited space, so different branches may map to the same
predictor
= errors?

m TargetPC saved with predictor

17

|
High Level Overview: Branch Target Buffer

(BTB) —
Look up

No

Yes

If there is a match on PC of branch, corresponding
predicted target instruction address returned

19

|
Branch Prediction

m If we're going to predict taken, we need to know where to
branch to earlier than when we determine where the branch
actually goes.

" How?

18

|
Real Branch Predictors

m Branch History Table (BHT)

= Stores predictions for individual branch instructions

= Store more than 1 bit to increase prediction accuracy
m Branch Target Buffer (BTB)

® For branches that are predicted taken, stores target address
m Both accessed in FETCH stage on jump instructions

20

In Fetch, if hit in BTB, send target Real Branch Predictors

Address to PC register for next cycle

== M = m Branch History Table (BHT)
igize — C = Stores predictions for individual branch instructions

im: L
o |

(Writeback)

= Store more than 1 bit to increase prediction accuracy
m Branch Target Buffer (BTB)

" For branches that are predicted taken, stores target address

m Both accessed in FETCH stage on jump instructions
m Both updated after EXECUTE stage

L ?
Pipelineﬁegister -

In Execute, when direction Advantages of Branch Prediction
of branch known, update

_ BHT and BTB
c

- m Highly predictable branches have no stalls
m Works well with loops.

m All hardware - no compiler necessary

R
|

:
" (Witeback)| | €]

I\ ?
Pipeline Register

Disadvantages/Limits of Branch Prediction

= Large penalty when wrong
= Badly behaved branches kill performance

m Large amount of chip area used for BTB and BHT
= Non-productive instructions waste energy and dissipate heat

25

Pipeline Summary

m Concept

= Break instruction execution into 5 stages

® Run instructions through in pipelined mode
m Limitations

" Can’t handle dependencies between instructions when instructions follow
too closely

* Data dependencies
= One instruction writes register, later one reads it
= Control dependencies
= Instruction sets PC in way that pipeline did not predict correctly
m Solutions to hazards other than stalling
= Data hazards
= Data forwarding
= Control hazards

= Branch prediction 7

27

|
What about unconditional control instructions?

m call and unconditional jmp always use target in instruction
" Have to decode the instruction to get those values
= But you could use branch prediction for those as well to prevent stalling
® ret may go back to multiple locations if called from multiple
locations

® Can stall until return address obtained from memory
® Return address prediction can be done via a stack in HW

26

|
Why Should Programmers Care

m Performance matters
" Lots of branches that aren’t predictable will slow down your code
= Why conditional moves are good
" Lots of data dependences slow down your code too
m In general, compiler and hardware optimizations do a good job

= But, the compiler can’t always determine if there is a true data
dependence when pointers are being used

= Sometimes hardware will mispredict branches and result in wasted cycles
m Sometimes we can restructure our code to make things easier
for the compiler

= Remove unnecessary branches or move them out of loops, link different
cases together (if/else if/else instead of sequence of if statements)
= Loop unrolling

= Make loop bodies longer so more instructions to choose from

28

Practice on Your Own

= Draw the pipeline diagram for the following code, assuming
predict not taken but with the reality of the branch specified in
comments

irmovqg $4, %r8
subg %rdi, %r8
31 end # not taken
mrmovqg (%$rsi), %r9
irmovqg $0, %rl0
subg %rl0, %r9
je end # taken
mrmovqg 8 (%rsi), %rll
addg %rll, %r9
end:

30

Dealing w/ Exceptions

m Conditions under which processor cannot continue normal op
m Causes
" Halt instruction
= Bad address for instruction or data
= Invalid instruction
m Typical Desired Action
= Complete some instructions
= Either current or previous (depends on exception type)
= Discard others
= Call exception handler
= Like an unexpected procedure call

m Our Implementation
" Halt when instruction causes exception

32

e ——
Today: Branch Prediction, Exceptions, and
Storage

m Branch Prediction

m Exceptions

m Storage technologies and trends (Ch 6.1)
= Memory technologies

31

|
Exception Examples

m Detect in Decode Stage

jmp $-1 # Invalid jump target
.byte OxFF # Invalid instruction code
halt # Halt instruction

m Detect in Memory Stage

irmovg $100, %rax
rmmovg %$rax, 0x10000(%rax) # invalid address

33

Exceptions in Pipeline Processor #1

irmovg $100, $rax
rmmovqg %rax,0x10000 (%rax) # Invalid address

nop
.byte OxFF # Invalid instruction code
1 3 4 5
0x000: irmovqg $100,%rax \ FIDIE[MI|W Exception
0x00a: rmmovq %rax,0x10000 (%rax) FIDI|IEI[M detected
0x014: nop FI{D|E
0x015: .byte OxFF F LD
Exception
detected

m Desired Behavior
= rmmovq should cause exception
" Following instructions should have no effect on processor state

34

