| |
Administrative Details

m Lab #4 due Thursday at 11pm
The Y86 Pipelined Datapath: Data and m Partner signup for lab 5 by Wednesday at noon

Control Hazards m Read CSAPP Ch. 4.4-4.5

CSCl 237: Computer Organization
24t Lecture, Monday, November 4, 2024

Kelly Shaw
1 2
| |
Last Time: The Y86 Datapath Today: The Y86 Pipelined Datapath

m Construction a single-cycle datapath for Y86

m Construction of a pipelined datapath for Y86
u Pipelining Concepts

= Adding pipeline registers

= Data hazards

= Ways to deal with data hazards
= Stalling
= Data forwarding

= Control hazards

Obstacles to speedup in Pipelining

WioH |

ml.
m2.

m Ideal cycle time w/out above limitations with n stage pipeline:

Obstacles to speeup i Piplining

m 1. Uneven Stages
m 2. Pipeline Register Delay

= Ideal cycle time w/out above limitations with n stage pipeline:

Obstacles to speedup in Pipelining

m 1. Uneven Stages
2.

m Ideal cycle time w/out above limitations with n stage pipeline:

Obstacles to speedup in Pipelining

m 1. Uneven Stages

m 2. Pipeline Register Delay

= |deal cycle time w/out above limitations with n stage pipeline:
= OldCycleTime / n

Seq Datapath Entire instruction takes 1 cycle Our goals for a better processor design:

rsp
m Faster clock rate
isize — © 'J m Use machine more efficiently

= No longer execute only one instruction at a time

10
Creating Stages to transform Seq Design Pipelined Datapath
;
IF D MEM WB Fetch ‘Decode ~ Execute Memory
I§1ze —* C
Fetch Decode Execute Memory WriteBack

m Fetch —get instruction
m Decode — read registers
m Execute —use ALU

= Memory — access memory

K
|

m WriteBack — write registers

(Writeback)

Pipeline Register

11 12

IF ID

addq %rbx, %rbx

addq %rbx, %rbx .

mrmovq (%rax), %rsi
rmmovq %rdi, (%r8)

xor %r9, %r10

ME

WB

Time->

IF 1D MEM

WB

mrmovq (%rax), %rsi addq %rbx, %rbx

addq %rbx, %rbx

mrmovq (%rax), %rsi .

rmmovq %rdi, (%r8)

xor %r9, %r10

Time->

13

IF ID

rmmovq %rdi, (%r8) mrmovq (%rax), %rsi addq %rbx, Y%erbx

addq %rbx, %rbx
mrmovq (%rax), %rsi
rmmovq %rdi, (%r8)

xor %r9, %r10

MEM

Time->

14

IF ID MEM

xor %r9, %r10 rmmovq %rdi, (%r8) mrmovq (%rax), %rsi addq %rbx, %rbx

addq %rbx, %rbx

mrmovq (%rax), %rsi
rmmovq %rdi, (%r8)

xor %19, %rl10

Time->

15

16

IF ID MEM WB

xor %r9, %r10 rmmovq %rdi, (%r8) mrmovq (%rax), %rsi addq %rbx, %rbx

MEM

addq %rbx, %rbx

mrmovq (%rax), %rsi

/L]
RN
gy HENAE

rmmovq %rdi, (%r8) !

xor %r9, %r10

- EV H E

Time->

IF

addq %rbx, %rbx

mrmovq (%rax), %rsi
rmmovq %rdi, (%r8)

xor %r9, %r10

MEM WB

xor %r9, %r10 rmmovq %rdi, (%r8) mrmovq (%rax), %ersi

Time->

17

IF ID MEM WB

xor %t9, %r10 rmmovq %rdi, (%r8)

addq %rbx, %rbx

mrmovq (%rax), %rsi

rmmovq %rdi, (%r8)

xor %r9, %r10

Time->

18

IF

addq %rbx, %rbx

mrmovq (%rax), %rsi

rmmovq %rdi, (%r8)

xor %r9, %r10

MEM WB

xor %r9, %r10

Time->

19

20

IF ID MEM WB

The machine in
cycle 4

addq %rbx, %rbx

mrmovq (%rax), %rsi

/L]
RN
g BIENAE

rmmovq %rdi, (%r8) !

xor %r9, %r10

Time->

IF 1D MEM WB

The machine in
cycle 5

mrmovq (%rax), %rsi

addq %rbx, %rbx

rmmovq %rdi, (%r8)

xor %r9, %r10 IF

L]
|
o EN4EIE

Time->

21

In what cycle was %rsi written?
In what cycle was %r9 read?

In what cycle was the addq executed?

addq %rbx, Y%rbx

mrmovq (%rax), %rsi

rmmovq %rdi, (%r8)

xor %r9, %r10 .
2

Time->

23

22
T ——
In what cycle was %orsi written? 6
In what cycle was %r9 read?

In what cycle was the addq executed?

MEM

addq %rbx, %rbx

BB
R
EE

mrmovq (%rax), "o

rmmovq %rdi, (%r8)

L

xor %r9, %r10

-

OV
7 [H

W
|
e 2]

Time->

24

In what cycle was %rsi written? 6
In what cycle was %r9 read? 5

In what cycle was the Add executed?

addq %rbx, %rbx

mrmovq (%rax), %rsi

E
>
1]
l

i

R
RN

rmmovq %rdi, (%r8)

-
IE

7 g

xor %19, %r10

K
MIWEH
SVl

Time->

25

In what cycle was %rsi written? 6
In what cycle was %r9 read? 5

In what cycle was the addq executed? 3

1F
%l‘bx, ety
. 1F D
mrmovq (%rax), %rsi

1

g EIEN N
= 5
u N
=z
dl

rmmovq %rdi, (%r8)

xor %r9, %r10

-

[\

3
0,

Time->

25

Incorrect Execution
Easy Right? Not so fast.

In what cycle does the addq write %rsi?
In what cycle does the xor read %orsi?

oo | (1] 5 FI[
xor|Vorsi, %or8 B

rmmovq %r9, 0(%r9 B o
andq %r8, %r10 ,?> o
. 2 3 4 5 6 7 g
Time->

27

26

T ——
Easy Right? Not so fast.

In what cycle does the addq write %rsi? cycle 5
In what cycle does the xor read %rsi?

MEM

addq %ordi,| %orsi

MEM

E[D
KDY,
s EEY

xor|“orsi, %or8

MEM w

rmmovq %r9, 0(%r9

MEM

andq %r8, %rl10

SIENAR
H
S N%
<L L
L]

W
o]

Time->

28

Easy Right? Not so fast.

In what cycle does the addq write %rsi? cycle 5
In what cycle does the xor read %rsi? cycle 3

xor| orsi, %r8

addq %rdi,|%rsi

andq %r8, %r10

]
rmmovq %r9, 0(%r9 '
7

Time->

29

How Could We Solve this Problem?

m Compiler could add nop instructions before later instruction

= We can add circuitry to detect the problem and stall the second
instruction

31

Easy Right? Not so fast. Ahhhh! Values can
not pass backwards
In what cycle does the addq write %rsi? cycle 5 in time
In what cycle does the xor read %rsi? cycle 3

addq %rdi,|%rsi

xor|orsi, %r8 B

rmmovq %9, 0(%t9

>
andq %r8, %rl0 l?>
6

Time->

30

Correct, Slow Execution

Easy Right? Not so fast.

In what cycle does the addq write %orsi? cycle 5
In what cycle does the xor read %rsi? cycle 6

Stall - wasted cycles

addq %rdi, %rsi | [7] 1] >0]
xor %orsi, %or8 iﬁ%iﬁiiﬁi _ B }

rmmovq %r9, 0(%r9

andq %r8, %rl10 Ir D

Time->

32

Correct, Slow Execution

Easy Right? Not so fast.

In what cycle does the addq write %rsi? 1% half of cycle 5
In what cycle does the xor read %rsi? 2"¢ half of cycle 5

Stall - wasted cycles

addq %rdi, %rsi

HEIE
xor Yorsi, %r8 i}%
rmmovq %r9, 0(%r9

andq %r8, %r10

I%l
o]HW
II

MEM
> -
MEM

8 9 10

\

Time->

33

33

[~ Tncorrect Execution caused by |

Data Hazard

In what cycle does the mrmovq write %rsi?
In what cycle does the xor read %orsi?

MEM

7

]
MIWII
QWII

mrmovq 0(%r9), %rsi

xor Yorsi, %r8

II
RN

N
N

7

rmmovq %r11, 0(%r10)

andq %r12, %r13

Time->

36

Only Register File rd/wr in half a cycle. All
other stages take a full cycle — this is
because of shared hardware

Correc

In what cycle does the addq write %rsi? 1% half 6T cycle 5
In what cycle does the xor read %rsi? 2" half of cycle 5

Stall - wasted cycles

addq %rdi, %rsi > g

xor %orsi, %r8 ﬁ;@% i;];)% B
rmmovq %r9, 0(%r9 B n
3 2

andq %r8, %r10

Time->

34

Incorrect Execution caused by
Data Hazard

In what cycle does the mrmovq write %rsi? 1% half of cycle 5
In what cycle does the xor read %rsi?

z
E]

mrmovq 0(%r9), %rsi

MEM

E[D
KDY,
s EEY

xor %orsi, %r8

rmmovq %rl11, 0(%r10

MEM

andq %r12, %r13

of R o] .
TN
o\ L
:
3
]

W
o]

Time->

37

Incorrect Execution caused by
Data Hazard

In what cycle does the mrmovq write %rsi? 1% half of cycle 5
In what cycle does the xor read %rsi? 2"¢ half of cycle 3

mrmovq 0(%r9), %rsi

xor %orsi, %r8
rmmovq %r11, 0(%r10)

andq %r12, %r13

Time->

Incorrect Execution caused by
Data Hazard

In what cycle does the mrmovq write %rsi? 1% half of 5

In what cycle does the xor read %rsi? 2" half of 3

Arrow to the left is
information passed
backwards in time

mrmovq 0(%r9), %rsi

xor %orsi, %r8
rmmovq %r11, 0(%r10

andq %r12, %r13

Time->

38

Incorrect Execution caused by
Data Hazard

In what cycle does the mrmovq write %rsi? 15t half of 5
In what cycle does the xor read %rsi? 2¢ half of 3

mrmovq 0(%r9), %rsi

xor Yorsi, %r8

rmmovq %r11, 0(%r10)

andq %r12, %r13

Time->

40

39

1
Data Hazard

Remember!!! Only

WB and ID take 2
cycle. All other
stages take a full

In what cycle does the mrmovq write %orsi?
In what cycle does the xor read %rsi? 2! ha

mrmovq 0(%r9), %rsi

xor %orsi, %r8

rmmovq %r11, 0(%r10

andq %r12, %r13

Time->

41

Barriers to pipelined performance

m Uneven stages
= Pipeline register delays

42

42

Barriers to pipeline performance

= Uneven stages
u Pipeline register delays

m Data Hazards

= An instruction depends on the result of a previous instruction still in the
pipeline and that dependence has the potential to cause erroneous
computation

44

Barriers to pipelined performance

m Uneven stages
m Pipeline register delays

m Data Hazards

43

Practice on Your Own

m Consider the Y86-64 code below. Are there any potential
problems due to data hazards in this code?

mrmova ($rdi), %r8
irmovqg $4, %r9
addg %$r9, %r8
rmmovqg $r8, (%rdi)

45

11

e ——
Read After Write (RAW) Data Dependences

m When a later instruction depends on the result of an
earlier instruction

m If instructions are close enough in pipeline, later
instruction may need to be stalled to ensure
correctness

|
RAW — Read after Write

addq
subq
xor

addq

%Tr8, %rs
%rsi, %r9
%rax, %rax
%rdi, %rd

46

Identify the RAW dependences

RAW

subq %r8, Y%rax

addq %r9, %r8

mrmovq (%r10), %rax

rrmovq %r8, %rax

48

47

|
Identify the RAW dependences

RAW addq/subq %r8
RAW addqg/rrmovq %r8

MEM

H
=]

addq %r9, %r8

H
S N%
<L L
L]

o]

subq %r8, %rax

MEM w

mrmovq (%r10), %rax

BN
g EEN

MEM

rrmovq %r8, %rax

z =
o ENAEIE

—_
[\
W

49

12

Solution 1: Data Forwarding

In what cycle is $rsi calculated in the machine?
In what cycle is $rsi used in the machine?

mrmovq 0(%r9), %rsi

xor %orsi, %r8

rmmovq %r11, 0(%r10)
andq %r12, %r13

Time->

Solution 1: Data Forwarding

In what cycle is %rsi calculated in the machine? End of cycle 4
In what cycle is %rsi used?

mrmovq 0(%r9), %rsi

xor %orsi, %r8

rmmovq %r11, 0(%r10

>
andq %r12, %r13 l?>
6

Time->

50

Solution 1: Data Forwarding

In what cycle is %rsi calculated in the machine? End of cycle 4
In what cycle is %rsi used? Beginning of cycle 4

mrmovq 0(%r9), %rsi

xor %orsi, %r8

rmmovq %rl1, 0(%r10) B MEM
andq %r12, %r13 l?> iEw
. 2 3 4 5 6 7 8
Time->
52
52

51

Solution 1: Data Forwarding

In what cycle is %rsi calculated in the machine? End of cycle 4
In what cycle is %rsi used? Beginning of cycle 5

mrmovq 0(%r9), %rsi >
_—) Wk(>]
rmmovq %r11, 0(%r10 .

andq %r12, %r13

Time->

53

13

Data-Forwarding

Where are those wires?
Fetch ecode Execute Memory

igize —> c

:
o I

(Writeback)

Pipeline Reglster I -

Data Forwarding
Example 2

Draw the timing diagram with data forwarding
Draw arrows to indicate data passing through forwarding

mrmovq 0(%r9), %r10 @ >
addq $8, %r10 @
addq %r10, %r11

rmmovq %rsi, 0(%r11)

. 34 5 6 7 8 910 11 12
Time->

Data-Forwarding Mem — Ex
Where are those wires?
Fetch ecode ~ Execute Memory
isize — c

|

K 4

"]
L.
~—

\‘F'
T

(erteback) ‘:

?
Pipeline Reglster
55

Data Forwarding
Example 2

Draw the timing diagram with data forwarding
Draw arrows to indicate data passing through forwarding

mrmovq 0(%r9), %r10
addq $8, %r10

addq %r10, %r11

rmmovq %rsi, 0(%r11)

Time->

57

14

Data-Forwardin Ex — Ex . -
& . Data Forwarding Circuitry
Where are those wires?
Fetch ecode Execute Memory . .
- - - - m Info communicated via wires between stages:
idize — C ® From stage producing value

= To each input consuming value
— Register number being written by producer / consumed by reader
— Value being written into register by producer

m Circuitry at consuming values
= Comparator for register being written by producer and register being read
by consumer

® Qutput of comparator feeds MUX selecting between consuming stage’s
pipeline register value and value forwarded from producing stage

:
©

-
7
\

¢

(Writeback)

Pipelineﬁegister

58 59

Data Forwarding Details Handling Data Hazards
m Can forward m Caused by some RAW dependences
* Memory to Execute m Compiler can insert nops to delay later instruction
= Value for'warded from Mem to next instruction’s Ex stage = Detect and stall
* Value bemg forwar.ded from. Mem n.1ay have bc.een produ.ced by Ex = Detect register written by earlier instruction (further in pipeline) will be
= Second instruction after instruction producing value in Ex needs read by later instruction (earlier in pipeline) before value written to
value in its Ex stage register file
* Execute to Execute " Prevent later instruction from completing decode stage until cycle register
= Value forwarded from Ex stage to next instruction’s Ex stage written to register file (writeback stage)

m Data forwarding
= Detect register written by earlier instruction (further in pipeline) will be
read by later instruction (earlier in pipeline) before value written to
register file

® When value needed by later instruction (execute stage) determine if
earlier instruction (further in pipeline) has produced value and can forward

60 it to execute stage 61

60 61

|
Today: The Y86 Pipelined Datapath

m Pipelining Concepts
m Construction of a pipelined datapath for Y86
= Adding pipeline registers
® Data hazards
® Ways to deal with data hazards
= Stalling
= Data hazards
= Control hazards

62

Pipelined Datapath
Fetch “Decode Execute Memory

igize — %'J
I

:
-+

(Writeback)

Pipeline Register

64

Control Hazard

In what cycle does the nextPC get calculated for the jne?
In what cycle does the xorq get fetched?

awsazsan | [7] [7] 5][]
- D0 >EC

xorq %r8, %r9 B

5

]
QWEI

NN
|

end: addq %rl1, %rl10

IH
“lIW

Time->

63

Control Hazard

In what cycle does the nextPC get calculated for the Jne? End of 4
In what cycle does the xorqg get fetched?

= | [& FIL]
jneend S
xorq %r8, %r9 B

end: addq %rl11, %r10
5

MEM

2]
QWII

NN
ool 7]

AIHV

Time->

65

16

cmpq %r12, %rl3

jne end

xorq %r8, %r9

end: addq %rl1, %rl10

Control Hazard

In what cycle does the nextPC get calculated for the jne? End of 4
In what cycle does the xorq get fetched? Beginning of 3

B -
N

B
1]

IH
LW

-

«»WII

5 7 8

Time->

66

cmpq %rl2, %r13

jne end
xorq %r8, %r9

end: addq %rl1, %rl10

Control Hazard: Stall until target known

In what cycle does the nextPC get calculated for the jne? End of 4
In what cycle does the xorg get fetched? Beginning of 3

>

Time->

67

17

