Intro to Logic Design and the Y86
Datapath

CSCl 237: Computer Organization
22nd Lecture, Wednesday, October 30

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1

Last Time: Intro to Logic Design and the Y86
Datapath
m RISC vs. CISC

m Logic Design and Hardware Control Language
= Combinational circuits
= Understanding HCL expressions

Administrative Details

® Quiz due Friday at 2:30pm
m Lab #4 checkpoint due Tuesday at 11pm
= Read CSAPP Ch. 4.2-4.3

m Colloquium on Friday
= Water robots!

Today: The Y86 Datapath

= Memory and clocking
® How is information stored

m Construction a single-cycle datapath for Y86
m Pipelining Concepts

Moving on: Storing Bits

m Combinational circuits do not store information
= Only react to signals at inputs and generate outputs
m Creating a sequential circuit requires storage
= Seq circuits have state and perform computations on that state
m Storage devices are controlled by a single clock
= A periodic signal that determines when new values are to be loaded
m Two classes of memory devices:
" Clocked registers — store individual bits or words

® Random access memories — store multiple words using an address to select
where word should be read/written

m Distinction between hardware registers and program registers
® Hardware registers are directly connected to circuits
" Program registers are stored in register file, which is a type of RAM

Register Operation

State =x State=y
Input =y Output = x |:> Zﬁ!:(g |:> Output =y
=D XD I =Dy

= Register stores data bits
= Acts as barrier between input and output
= As clock rises, loads input, possibly changes output

= Y86-64 processor uses clocked registers to hold PC,
CC, and Stat

Hardware Registers

Structure

iz _g a+ 07

is [12 o Os

Is ’_g a+ Os5

o S 01 I o
i3 _g o+ 03

12 ’_g a+ 02

o 0 Clock

io _g o+ [o 1)

Clock

= Stores word of data
= Different from program registers seen in assembly code
= Collection of edge-triggered latches

® Loads input on rising edge of clock

State Machine Example

Co[r]nb. Logic

= Accumulator circuit

= Load or accumulate
on each cycle

= (Notice effect of
clock on Out)

cock [L[L[LT LT LT
load | | 1

mlo [o [e [e [[|
Out X0 Xotx1 XotXi+x2 X3 X3txa | XatXetxs |

Random-Access Memory Register File Timing

valA
— = Reading
sreh N R - valW 2 zlzl = Lik bi i I logi

Read Register wlew Write port srcA | A . Like combinational logic

ports ‘@B file &= P | file = QOutput data generated based on input addr
sieB 1B X ‘% 2 = After some small delay

Srcl
Cllck T m Writing
= Stores multiple words of memory (has internal storage) Clock " Like register

= Update only as clock rises
= Address input specifies which word to read or write P v

= Register file |Z|
= Holds values of program registers (¥rax, $rsp, etc.) 2 aw y . 2|1|
« Register identifier serves as address Register w [astw Rising Register |2
R - file = 2 5> clock = f W |dstw
— ID 15 (OxF) implies no read or write performed I file ——
= Multiple Ports
= Can read and/or write multiple words in one cycle o]k i
0C
— Each has separate address and data input/output Clock
9 10
9 10
e —— T ——
Ch 4.2 Summary Today: The Y86 Datapath
m Computation -
= Performed by combinational logic -

" Computes Boolean functions m Construction a single-cycle datapath for Y86

= Continuously reacts to input changes . ..
m Pipelining Concepts

m Storage

" Registers (hardware)
= Hold single words
= Loaded as clock rises

= Random-access memories
= Hold multiple words
= Possible multiple read or write ports
= Read word when address input changes
= Write word as clock rises

11 12

What Happens On Instruction Execution?

13

Goal

m Build an architecture to support the following instructions
= Arithmetic: addqg, subg, andg, xorg
* Data movement: irmovq, rrmovq, Cmov*
= Memory references: mrmovqg, rmmovq, pushg, popg
= Control: call, ret, jmp, jle, jl,..

15

Steps For Executing An Instruction

m Fetch
= Read the next instruction from memory (address in IP/PC)

m Decode
= Figure out which instruction
= Figure out and obtain operands

m Execute
= Perform calculations

= Memory

" Read or write data memory
m Write back

" Update registers
m Update program counter

14

Process

1) Design basic framework that is needed by all instructions
2 Build a computer for each operation individually

3 Add MUXs to choose between different operations

2 Add control signals to control the MUXs

16

Framework

Framework

17

Framework

9000

18

Framework

90089

19

20

Framework

Write register file

Get Instruction

.—’

Framework

Update Next Instr Addr

Write register file

Get Instruction

Get Instruction Get Instruction

How do we know at How do we know at
what address to fetch what address to fetch
instruction? instruction?

Get Instruction Get Instruction

What do we end u
with? : What do we end up

with?

27 28

ion

.4’

29

29

“addqg” Instruction

Write register file

31

ion

Increment by size of
instruction

30

Srbx: 3

addqg Instruction Srbp: 5

Operation |[rA |rB |code |funct |# meaning
addq 3 5 |6 0 # %orbp = %rbp + Yorbx

rite register fil

32

32

Srbx: 3

addqg Instruction srbp: 5
Operation |rA [rB |code |funct # meaning
addq 305 e # %rbp = %rbp + %rbx
) . code/fun
I > rA
Inst
rite register fil
33
. Srbx: 3
addqg Instruction srbp: 5
Operation |rA |rB |¢ # meaning
addq 3 5 ¢ # %orbp = %rbp + %orbx

code/fun

Write register file

35

Srbx: 3
addg Instruction $rbp: 5
Operation |rA |rB |code |funct # meaning
addq 3 |5 ! # %rbp = Y%rbp + %rbx
| 2
¢I . code/fun
IIt
rite register fil
34
. Srbx: 3
addqg Instruction $rbp: 5

Operation |rA |1B
addq 3 5 @

~

meaning
%orbp = %rbp + Yorbx

rA&rB

code/fu

Write register file

35

36

36

Srbx: 3
addg Instruction srbp: 5
Operation |rA [rB |code |funct # meaning
addq 3 |5 |6 0 # %rbp = %rbp + %rbx
& A
> rA
I
Inst
rite register file
37
. Srbx: 3
addqg Instruction $rbp: 5
Operation |[rA |rB |code |funct # meaning
addq 3 5 |6 0 # %orbp = %rbp + Yorbx
*l codelfup—)
Inst |
—

39

Srbx: 3
addg Instruction srbp: 5
Operation |[rA |rB |code |funct # meaning
addq 3 5 6 0 # Y%rbp = %rbp + %rbx

¢I code/fu

38
. Srbx: 3
addqg Instruction Srbp: 5
Operation |[rA |rB |code |funct |# meaning
addq 3 5 |6 0 # %orbp = %rbp + Yorbx
Inst | ,
—

40

10

What happens if instruction reads and
writes same register?

Operation |rA [rB |code |funct # meaning
addq 3 5 6 0 # %rbp = Y%rbp + %rbx

i code/fu

IrA

t

41

addqg In¢

Operation |t funct # meaning

addq o 0 # %orbp = %rbp + Yorbx

4

IIt |

43

Reading/Write Registers

m When does register get written?
= At the end of the clock cycle
" Edge-triggered circuits

addqg Ing
Operation |1 funct |# meaning
addq . code 0 # %orbp = %rbp + Yorbx

i code/fu

11

addqg In¢

Operation |r
addq

code/fu
> rA

n
Inst

funct

meaning

%rbp = %rbp + %rbx

mrmovqg Operation

Operation |TA |1B

D

code

func

—

meaning

mrmovq |3 5

8

5

0

%rA=M[%rB + D]

¢I - code/fun
IIt

addqg Ing
Operation |r
jaddq <. decode

code/fu

funct

meaning

%rbp = %rbp + %rbx

47

mrmovqg Operation

Operation [tA (B |D

code

funct | # meaning

mrmovq |3 |5 |8

5

0 #

%rA =M][%B + D]

code/fun

48

mrmovqg Operation

Operation [rA |[rB |D |code |funct |# meaning
mrmovq |3 5 |8 |5 0 # %rA = M[%1B + D]

1
rB

N : code/fun
> rA
Inst
D

mrmovqg Operation

Operation [rA |[rB |D |[code |funct |# meaning

mrmovq |3 5 |8 |5 0 # %rA = M[%rB + D]

¢I . code/fun
Inst
D

49

mrmovqg Operation

Operation [tA |rB |D |code |funct |# meaning
mrmovq |3 5 |8 |5 0 # %rA =M[%rB + D]

D

50

mrmovqg Operation

Operation [tTA |rB |D |code | funct |# meaning

mrmovq |3 |5 (8 |5 0 # Y%rA =M[%rB + D]

code/fu

51

52

13

mrmovqg Operation

Operation [rA |[rB |D |code |funct |# meaning
%rA =M[%rB + D]

mrmovq |3 5 |8 |5 0

B

Memory Address

code/fu
> rA
Inst
D

mrmovqg Operation

Operation [rA |[rB |D |code

funct

meaning

mrmovq |3 5 |8 |5

%rA =M[%rB + D]

j |

53

mrmovqg Operation

Operation [tA |rB |D |code |funct |# meaning
%rA =M[%rB + D]

mrmovq |3 5 |8 1|5 0

rA
code/fu :

54
mrmo ation
Operation | «o + |code | funct | # meaning
mrmovq < > |5 |8 |5 0 # Y%rA =M[%rB + D]

| J

code/fu

55

56

14

mrmo ion
—— +10
Operation | . i |+ |code |funct |# meaning
mrmovq £ 5 5 |8 |5 0 # %rA = M[%1B + D]

-

code/fu
rA

rmmovqg Operation

Srbx:
Srbp:

3
5

Operation [rA |[rB |D |code

funct

meaning

rmmovq |3 5 |8 |4

M[%rbp + D]=%rbx

57

rmmovqg Operation

Srbx:
Srbp:

3
5

Operation [tA [tB |D |code

funct

meaning

rmmovq |3 5 |8 |4

M[%rbp + D]="4ibx

58

rmmovq Operation g
Operation [tTA |rB |D |code | funct | # meaning
rmmovq (3 |5 |8 |4 0 # M[%rbp + D]=%rbx

59

code/fu

read
rA

60

15

H Srbx: 3
rmmovq Operation rbo &
Operation [tA |[rB |D |code |funct |# meaning
rmmovq |3 5 8 |4 0 # M[%rbp + D]=2%rbx

code/fu
rA

rmmovqg Operation

Srbx:
Srbp:

3
5

Operation [rA |[rB |D |code

funct | # meaning

rmmovq |3 5 |8 |4

0 # M[%rbp + D]=2%rbx

61

rmmovqg Operation g
Operation [tA |rB |D |code |funct |# meaning
rmmovq |3 |5 |8 |4 0 # M[%rbp + D]=%rbx

In Data for memory

62

rmmovqg Operation

Srbx:
Srbp:

3
5

Operation [tA (B |D |code

funct | # meaning

rmmovq |3 5 |8 |4

0 |#M[%rbp +D]=%rbx

63

Nothing

64

16

Combining 3 Operations

code/fu
> rA

Inst
D

Combhir’ng 3 Operations

Two values to the
same input

Two wires to the
12 \ same input
I . code/fu

>

Inst
D

65

Combining 3 Operations

Two wires to the
same input
Add MUXs

67

66

66

Combining Operations

Two wires to tF

same input
Add MUXs

code/ful

67

68

17

Combining Operations

Control

Code/Func

69

[~ Unit

Combining Operations

Control

addg
mrmovqg
rmmovqg

70

18

