| |
Administrative Details

m Read CSAPP Ch. 4.2
Machine-Level Programming: = Colloguium Friday at 2:35pm in Wege
Y86'64 " Info about winter study and spring classes
m Fill out TA Feedback Forms by today

m Apply to be a TA by toda
CSCl 237: Computer Organization PPl 4 ¥

20th Lecture, Friday, October 25

Kelly Shaw
1 2
e | |
Last Time: Structs and Y86-64 ISA Today: Y86-64 ISA and RISC vs. CISC
m Structures (Ch 3.9) m Y86-64 Instruction Set Architecture
" Allocation = Similar state and instructions as x86-64
= Access . .
= Simpler encodings
= Alignment

m Y86-64 Instruction Set Architecture = Compiling and simulating Y86-64 code

= Similar state and instructions as x86-64
= Simpler encodings

Ch 4 Processor Architecture Overview Coverage

= Background
® Instruction sets

" Logic design
= Sequential Implementation

= Asimple, but not very fast processor design
= Pipelining

= Several overlapping tasks running simultaneously
= Pipelined Implementation

= Making it work in the face of “hazards”

m Our Approach

= Work through designs for particular instruction set
= Y86-64 - a simplified (gentler) version of the Intel x86-64 ISA
" Work at “micro-architectural” level
= Assemble basic hardware blocks into overall processor structure
— Memories, functional units, etc.
= Surround by control logic to make sure each instruction flows through
properly
= Use simple hardware description language to describe control logic
= Can extend and modify
= Test via simulation

Ch 4.1 - Instruction Set Architecture

m Assembly Language View

" Processor state Application

= Registers, memory, ... Program

® Instructions Compiler |0S

* addq, pushg, ret, ..
= How instructions are encoded as bytes

m Layer of Abstraction CPU
= Above: how to program machine Besiel
= Processor executes instructions in a Circuit
sequence Design

= Below: what needs to be built Chip
= Use variety of tricks to make it run fast Layout

= E.g., execute multiple instructions
simultaneously

Y86-64 Processor State

RF: Pi m :
regir;g: Cor?(ﬁtion Stat: Program status
$rax $rsp %r8 $rl2 codes
%rcx %rbp %9 %13 |zE]sE{oq DMEM: Memory
$rdx $rsi %rl0 $rld PC
Srbx $rdi sr1l | |

Program Registers
= 15 registers (omit $r15). Each 64 bits.

Condition Codes
= Single-bit flags set by arithmetic or logical instructions

— ZF: Zero SF: Negative OF: Overflow
Program Counter

32-bit integer

= Indicates address of next instruction ’—‘
0A0BOCOD Memory

Program Status :
a:|0D

= Indicates either normal operation or some error condition

Memory

= Byte-addressable storage array

= Words stored in little-endian byte order Little-cndian

oo Wikinad: 8

https://en.wikipedia.org/wiki/Endianness

| |
Y86-64 Instruction Set)
Y86-64 Instructions

Byte 1 2 3 4 5 6 7 8 9 10

IO

halt

m Format

® 1-10 bytes of information read from memory

crovit rh. 18 = Can determine instruction length from first byte

irmovq V, B [3[of=]m] v | = Not as many instruction types, and simpler encoding than with x86-64
rmmovq A, D(r8) [4] o [ra]] D] ® Each accesses and modifies some part(s) of the program state

mrmovg D (rB), rA |5 \ 0 | rA\ rBI D |

oram w [E[w[A

XX Dest | 7 \ f| Dest |

call Dest [8]o] Dest |

pushqg rA n

popa A [Blo]rafF]
9 10
9 10
I ——— I ——

)) Y86-64 Instruction Set
Encoding Registers Byte

0
m Each register has 4-bit ID halt

1 2 3 4 5 6 7 8 9 10

$rax 0 %r8 8
$rex 1 %r9 9 oo
$rdx 2 %rl0 A
%ibx 3 %iu B v Ay 18
$rsp 4 $rl2 c irmovqg V, rB | 3 ‘ 0 I F ‘ rBI \ |
%rbp 5 %$rl3 D
rsi_| 6 sr1a | E rmmovg A, D(rB) | 4| o]l 8] D |
$rdi 7 No Register | F
mrmovg D(r8), rA |5 0| ral 8] D |
= Same encoding as in x86-64 OPq 1A, 1B [6 [] ra] r8]
m Register ID 15 (0xF) indicates “no register” XX Dest [Tw] Dest |
= Will use this in our hardware design in multiple places call Dest [To] Dest |

pushqg rA I!
popg rA Eﬂ

11 12

Y86-64 Instruction Set

< cmove

cvone [2T]

rrmovq

cmovle

Byte 0 1 2 3 5
halt

]

cmovXX rA, rB

irmovg V, rB [3]o]=]rs]

rmmovq rA, D(rB) | 4 \ 0 | rA\ rBI

mrmovqg D(rB), rA | 5 ‘ 0 I rA‘ rBI

i
[2]4]
[2]5]
[2]¢]

3

erorse [17]
s [17]

OPg rA, B n

Dest

jXX Dest |7‘fn|
1o}

call Dest

Dest

Y86-64 Instruction Set

10

popd A [elo]m[=]

Byte 0 1 2 3 5 ¢ ’
halt
nop
cmovXX rA, B
irmovg V, rB |3‘0|F‘I’BI |
rmmovq rA, D(rB) | 4 ‘ 0 I rA‘ |'BI
mrmovg D (rB), rA | 5 ‘ 0 I rA‘ |'BI

i
OPq rA, 1B [6 [fn[rm]m
§XX Dest [7]fm] Dest
call Dest [elo] Dest !
ret
pushqg rA ﬂ

15

Y86-64 Instruction Set

Byte 1 2 3

halt

cmovXX rA, rB

Io

irmovq V, B [3]o]=]rs]

rmmovg rA, D(B) |4 o] ra] 8]

mrmovg D(rB), rA |5] 0| ral]

OPg rA, B n

Dest

JXX Dest |7‘nt
Lelo]

call Dest

Dest

pushg rA n
popq 1A [B[0]

10

14

Y86-64 Instruction Set

Byte o 1 2 3 5
halt

nop

cmovXX rA, B

imovq V, 1B [3]o]=]rs|

rmmovg A, D(rB) | 4| o]l 8]

mrmovg D(B), rA |5 [o ral 8|

OPq 1A, 18 6 []] 8]

XX Dest [7][] Dest
call Dest [s]o] Dest

ret
pushqg rA n .
510}

I}
I}

popg 1A

10

16

|
Y86-64 Instruction Set

Byte 0 1 2 3 4 5 6 7 jmp
halt j1e
nop ﬂ j1
cmovxX A, B { je
irmovg V, rB [3]o]=]rs] v < Sime
rmmovq rA, D(rB) | 4 \ 0 | rA\ rBI D Sz
mrmovg D (rB), rA | 5 \ 0 | rA\ rBI D i
OPq rA, 1B 6 [| ra[rB

XX Dest | 7 \ f| Dest |
call Dest [8]o] Dest |

pushg rA n
popq A (2 [ofmlF]

17

Arithmetic and Logical Operations
Instruction Code Function Code

Add = Refer to generically as “OPg”
| addq rA, rB |6 0 | rA fBII " Encodings differ only by “function code”

= Low-order 4 bits in first instruction
Subtract (rA from rB) word

| subq rA, rB [6 1]ral g I = Set condition codes as side effect

And

| anaama, m [s[2[alr]]

Exclusive-Or

| xorqg rA, rB Bmm

19

Instruction Example
m Addition Instruction
Generic Form

Encoded Representation

agag ra, 8 [6]0]m[n] |

= Add value in register rA to that in register rB

= Store result in register rB

= Note that Y86-64 only allows addition to be applied to register data
= Set condition codes based on result
" e.g., addg %rax,%$rsi Encoding: 60 06
" Two-byte encoding

= First indicates instruction type

= Second gives source and destination registers

18

Move Operations
Register = Register

| rrmovqrA, rB nmm |

Immediate = Register

irmovqV, rB IBIOIF[rBI v l
Register & Memory

rmmovq rA, D (rB) I 4 [0 I rA[rBI D l
Memory => Register

| mrmovq D (rB), rA I 5 [0 I rA[rBI D l

= Like the x86-64 movq instruction
= Simpler format for memory addresses
= Give different names to keep them distinct

20

$rax 0 %r8 8
$rex 1 %r9 9
Move Instruction Examples ESm| 2| (s *
%rbx 3 %$rll B
X86_64 Y86-64 $rsp 4 $rl2 c
$rbp 5 %rl3 D
$rsi 6 $rld E
| movqg $0xabcd, %rdx | | irmovq $0xabcd, %rdx $rdi 7 No Register | F'
Encoding: 30 F2 cd ab 00 00 00 00 00 00
| movq %rsp, %rbx | | rrmovq %rsp, %rbx |
Encoding: 20 43
| movq -12(%rbp) ,%rcx | | mrmovq -12 (%$rbp) ,%rcx |
Encoding: 50 15 £4 f£f ff £f £f £f ff £f
| movq $rsi,Ox4lc(%rsp) | | rmmovq %rsi,Ox4lc(%rsp)
Encoding: 40 64 1c 04 00 00 00 00 00 00

2

21

Conditional Move Instructions

Move Unconditionally

rrmovqrA, rB

Move When Less or Equal

code”

[2] 1A 3]

| cmovlerA, rB

Move When Less

| cmovlrA, rB

Move When Equal

[2]3]ral 8

| cmove rA, rB

Move When Not Equal

| cmovne rA, rB

Move When Greater or Equal

| cmovge rA, rB

Move When Greater

| cmovg rA, rB

= Refer to generically as “cmovxX”
" Encodings differ only by “function

= Based on values of condition codes
® Variants of rrmovgq instruction

= (Conditionally) copy value from
source to destination register

23

Review: Byte Ordering Example

= Example
= Let variable x have 4-byte value of 0x01234567

® The address given by &x is 0x100

Big Endian

Little Endian

0x100 0x101 0x102 0x103
[o1 |23 | a5 [67 | [|

0x100 0x101 0x102 0x103
| 67 | a5 [23 | o1 | [|

Big Endian: Least significant byte has highest address

Little Endian: Least significant byte has lowest address

22

Jump Instructions

Jump (Conditionally)
| jxxDest |7 |fnf Dest ||

= Refer to generically as “jxx”
" Encodings differ only by “function code” fn
= Based on values of condition codes
= Same as x86-64 counterparts
= Encode full destination address
= Unlike PC-relative addressing seen in x86-64

24

Jump Instructions

Jump Unconditionally

| jmpDest [7]0] Dest | |

Jump When Less or Equal

| jle Dest |7‘1| Dest | |

Jump When Less
| jipest [7]2] Dest ||

Jump When Equal
| je Dest I 7 ‘ 3 I Dest I |

Jump When Not Equal
| jne Dest |7 ‘ 4| Dest I |

Jump When Greater or Equal

| jgeDest [7]5] Dest ||

Jump When Greater

| jgpest [7]6] Dest | |

25

Procedure Call and Return

| call Dest |8]o] Dest | |

® Push address of next instruction onto stack
= Start executing instructions at Dest
" Like x86-64

" Pop value from stack
= Use as address for next instruction
= Like x86-64

27

Stack Operations
| pusnarn [A[0]w7] |

= Decrement $rsp by 8
= Store word from rA to memory at $rsp
= Like x86-64

popara [a[0[w¥] |

= Read word from memory at $rsp
= Save inrA

® Increment $rsp by 8
= Like x86-64

26

Miscellaneous Instructions
| nop o] |

® Don’t do anything

[hare |

= Stop executing instructions

" x86-64 has comparable instruction, but can’t execute it in user mode
= We will use it to stop the simulator

® Encoding ensures that program hitting memory initialized to zero
will halt

28

Program Status Conditions (Stat) Y86-64 Sample Program Structure #1
m . iz # Initialization = Must set up stack
R A = Normal operation .
© call Main = Where located
0CE = Halt instruction encountered K dor’
HLT 2 .align 8 # Program data = Make sure don’t
array: overwrite code!
m * Bad address (either instruction or data) EEE = Must initialize data array
encountered . . i
ADR 3 Main: # Main function
= Exception ..
INS 4 ® Invalid instruction encountered
. len: # len function
= Exception
.pos 0x100 # Placement of stack

m Desired Behavior Stack:
= |f AOK, keep going o
= Otherwise, stop program execution

29 32

29 32
e —— T ——
Y86-64 Program Structure #2 Y86-64 Program Structure #3
init:

.pos 0 # Start at address 0 Main:
irmovqg Stack, %rsp # Set up stack pointer irmovq array, %rdi
call Main # Execute main program call len #len (array)
halt # Terminate ret

Array of 4 elements + terminating 0

array: align 8 m Set up call to len
.quad 0x000d400040004000d = Follow x86-64 procedure conventions
-l CHINEIOE by = Put array address as argument

.quad 0x0b000b000b000b00
.quad 0xa000a000a000a000
.quad 0

" Program starts at address O (.pos 0)
" Must set up stack and stack pointer (.pos 0x100)
® Must initialize data array

® Can use symbolic names

33 34

Assembling Y86-64 Program

unix> yas len.ys

" Generates “object code” file 1en.yo
= Actually looks like disassembler output

0x054: | len:

0x054: 30£80100000000000000 | irmovqg $1, %r8 # Constant 1

0x05e: 30£90800000000000000 | irmovq $8, %r9 # Constant 8

0x068: 30£00000000000000000 | irmovg $0, %rax # len = 0

0x072: 50270000000000000000 | mrmovqg (%rdi), %rdx # val = *a

0x07c: 6222 | andq %rdx, %rdx # Test val

0x07e: 73a000000000000000 | je Done # If zero, goto Done

0x087: | Loop:

0x087: 6080 | addq %r8, %rax # lent++

0x089: 6097 | addq %r9, %rdi # at+

0x08b: 50270000000000000000 | mrmovqg (%rdi), %rdx # val = *a

0x095: 6222 | andq %rdx, %rdx # Test val

0x097: 748700000000000000 | jne Loop # If '0, goto Loop

0x0a0: | Done:

0x0a0: 90 | ret

35

35

Debugging Tips

m Insert halt instructions to see the values in registers and memory
at certain points in your code
® Harder to do in loops, but you can.

= Load the loop index you want to examine into a register

= If that value you loaded is equal to the current loop counter register,

jump to a label that just has a halt instruction
m Don’t use labels more than once in a file.

u For problem 4, you probably need to put the position of the
stack to be at a value larger than 0x100 (e.g., 0x400) because
you’ll have a lot of instructions

37

Simulating Y86-64 Program

| unix> yis len.yo

" Instruction set simulator

= Computes effect of each instruction on processor state

= Prints changes in state from original

Changes
$rax:
$rsp:
%$rdi:
%r8:
%r9:

Changes
0x00£0:
0x00£8:

Stopped in 33 steps at PC = 0x13.

to registers:

0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000

to memory:
0x0000000000000000
0x0000000000000000

0x0000000000000004
0x0000000000000100
0x0000000000000038
0x0000000000000001
0x0000000000000008

0x0000000000000053
0x0000000000000013

Status 'HLT', CC Z=1 S=0 O=0

36

