
1

1

Machine-Level Programming:
Structs and Y86-64

CSCI 237: Computer Organization
19th Lecture, Wednesday, October 23

Kelly Shaw

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

1
2

Administrative Details

¢ Midterm in lab today
¢ Read CSAPP Ch. 4.1-4.2
¢ Snack and Gab today 4:10-4:30 in CS commons
¢ Gourd Decorating tomorrow at 3:30 in CS commons

2

3

Last Time: Machine-Level Programming: 
Arrays and Structs
¢ Arrays (Ch 3.8)
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

¢ Structures (Ch 3.9)
§ Allocation
§ Access
§ Alignment

3
4

Today: Arrays, Structs and Y86-64 ISA

¢ Arrays (Ch 3.8)
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

¢ Structures (Ch 3.9)
§ Allocation
§ Access
§ Alignment

¢ Y86-64 Instruction Set Architecture
§ Similar state and instructions as x86-64
§ Simpler encodings

4



2

5

get_herd_value:

.LFB0:

 movslq %esi, %rsi

 movslq %edi, %rdi
leaq (%rdi,%rdi,4), %rax

addq %rax, %rsi

movl herd(,%rsi,4), %eax

ret

herd:

 .long 1

 .long 5
 .long 2

 .long 0

 .long 6

 .long 1

 .long 5

 .long 2

 .long 1

 .long 3
 .long 1

 . . .

5
6

Questions about Nested Arrays?

¢ Allocated contiguously
¢ We can locate any element using math
¢ We will see later that these arrays are “cache friendly”

¢ However, there are other ways to make 2-D arrays.
§ What if we wanted to assemble an array out of existing arrays?

6

7

Multi-Level Array Example
¢ Variable name denotes array 

of 3 elements
¢ Each element is a pointer
§ 8 bytes

¢ Each pointer points to array 
of int’s 

eph_val bob = { 1, 5, 2, 1, 3 };
eph_val aly = { 0, 2, 1, 3, 9 };
eph_val dan = { 9, 4, 7, 2, 0 };

#define COUNT 3
int *name[COUNT] = {aly, bob, dan};

36160

16

56

168

176

name

bob

aly

dan

1 5 2 1 3

16 20 24 28 32 36
0 2 1 3 9

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76

7
8

Element Access in Multi-Level Array

¢ Computation
§ Element access Mem[Mem[name+8*index]+4*val]
§ Must do two memory reads

§ First get pointer to row array
§ Then access element within array

salq    $2, %rsi            # 4*val
  addq    name(,%rdi,8), %rsi # p = name[index] + 4*val
  movl    (%rsi), %eax        # return *p
  ret 

int get_name_value
  (size_t index, size_t val)
{
  return name[index][val];
}

bob

aly

dan

name

8



3

9

Array Element Accesses Comparison

int get_herd_value
  (size_t index, size_t val)
{
  return herd[index][val];
}

int get_name_value
  (size_t index, size_t val)
{
  return name[index][val];
}

Nested array Multi-level array

Accesses looks similar in C, but address computations very different: 

Mem[herd+20*index+4*val] Mem[Mem[name+8*index]+4*val]

9
10

Practice on Your Own

¢ How are elements in a 3 dimensional organized in memory?
¢ Consider running this code to see:

int arr[2][3][4];

for(int i = 0; i < 2; i++){

      for(int j = 0; j < 3; j++){

        for(int k = 0; k < 4; k++){

           printf(“arr[%d][%d][%d]: %lx\n”, i, j, k, 

   (unsigned long) &arr[i][j][k]);

        }

     }

  }

10

11

(Quick) Struct Overview

¢ Structs are a way to make “composite types” in C
¢ Syntax:

struct type_name {

     type_0 name_0;

     type_1 name_1;

     type_2 name_2;

     …

};

…

struct type_name var;

var.name_0 = val;

var.name_2 = another_val;

…

11
12

Ch 3.9 - Structure Representation

¢ Structure represented as block of memory
§ Big enough to hold all of the fields

¢ Fields ordered according to declaration
§ Even if another ordering could yield a more compact 

representation

¢ Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the structures in 

the source code 

a

r

i next

0 16 24 32

struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};
…
struct rec r;

12



4

13

# r in %rdi, idx in %rsi  
  leaq  (%rdi,%rsi,4), %rax
  ret

int *get_ap
 (struct rec *r, size_t idx)
{
  return &r->a[idx];
}

Generating Pointer to Structure Member

¢ Generating Pointer to Array 
Element
§ Offset of each structure member 

determined at compile time
§ Compute as r + 4*idx

r+4*idx

a

r

i next

0 16 24 32

struct rec {
    int a[4];
    size_t i;
    struct rec *next;
};

13
14

.L11:                         # loop:
movslq 16(%rdi), %rax #   i = M[r+16]
movl %esi, (%rdi,%rax,4) #   M[r+4*i] = val
movq 24(%rdi), %rdi      #   r = M[r+24]
testq %rdi, %rdi          #   Test r
jne .L11                #   if !=0 goto loop

void set_val
(struct rec *r, int val)

{
while (r) {

int i = r->i;
r->a[i] = val;
r = r->next;

}
}

Following Linked List
¢ C Code

Register Value
%rdi r

%rsi val

struct rec {
    int a[4];
    int i;
    struct rec *next;
};

Element i

r

i next

0 16 24 32
a

14

15

Structures & Alignment

¢ Aligned Data
§ Primitive data type requires K bytes
§ Address must be multiple of K
§ Required on some machines; advised on x86-64

¢ Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)

§ Inefficient to load or store data that spans quad word boundaries
§ Virtual memory trickier when data spans 2 pages

¢ Compiler
§ Inserts gaps in structure to ensure correct alignment of fields

15
16

Structures & Alignment
¢ Unaligned Data

¢ Aligned Data
§ Primitive data type requires K bytes
§ Address must be multiple of K

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v
p p+1 p+5 p+9 p+17

struct S1 {
  char c;
  int i[2];
  double v;
} *p;

16



5

17

struct S1 {
  char c;
  int i[2];
  double v;
} *p;

Satisfying Alignment with Structures
¢ Within structure:

§ Must satisfy each element’s alignment requirement

¢ Overall structure placement
§ Each structure has alignment requirement K

§ K = Largest alignment of any element
§ Initial address & structure length must be multiples of K

¢ Example:
§ K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

17
18

Arrays of Structures

¢ Overall structure length multiple of K
¢ Satisfy alignment requirement 

for every element

struct S2 {
  double v;
  int i[2];
  char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •
a+0 a+24 a+48 a+72

18

19

Ch 3.8 & 3.9 Summary

¢ Arrays
§ Elements packed into contiguous region of memory
§ Use index arithmetic to locate individual elements

¢ Structures
§ Elements packed into single region of memory
§ Access using offsets determined by compiler
§ Possible require internal and external padding to ensure alignment

19
20

Practice on Your Own

¢ What is the size of the following struct (assuming alignment 
requirements are adhered to)?  

¢ If the address of an instance of this struct is stored in %rdi, write 
the assembly code to read the value of the id field into register 
%rsi.

struct item{
    char str[10];
    long id;
    int num;
};

20


