
1

2

Machine Level Programming: Control

CSCI 237: Computer Organization
14th Lecture, Monday, Oct. 7

Kelly Shaw

2
3

Administrative Details
¢ Lab #3 checkpoint due Tuesday at 11pm
§ Any questions?

¢ Read CSAPP 3.7-3.8

3

4

Last Time: Machine-Level Programming:
Control
¢ Arithmetic and Logic Instructions
¢ gdb commands for bomb portion of lab
¢ Intro to data-dependent control
§ Condition codes
§ Conditional branches
§ Conditional data
§ Loops
§ Switch Statements

4
5

Today: Machine-Level Programming: Control

¢ Intro to data-dependent control
§ Condition codes
§ Conditional branches
§ Conditional data
§ Loops
§ Switch Statements

5

2

6

Reading Condition Codes

¢ Three ways to “access” condition codes in assembly. We will go
over them in detail:
1. Operations that set a byte to 0/1 based on some combination of the

condition codes
2. Operations that “jump” to some part of program based on condition

codes
3. Operations that transfer data only if some condition codes are set

We are going to do a lot of conversion between C and assembly, and
between assembly and C. The practice problems and examples in the
textbook are really helpful!

6
7

Reading Condition Codes 2: jmp instrs

¢ Before we talk about instructions that alter control flow in
assembly, let’s review the control flow constructs in C
§ if (condition)
§ while (condition)
§ do { } while;
§ for (init; condition; post)
§ switch
§ goto!!
§ functions

Simplest and least familiar, but
analogous to how we will write
assembly. Let’s review!

7

8

Expressing control flow constructs with goto

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

¢ C allows goto statement (typically considered bad
programming style, but sometimes useful!)
§ Control jumps to a position designated by the target label

¢ We can convert many control flow constructs to equivalent C
code with goto statements

long absdiff_j
 (long x, long y)
{
 long result;
 int ntest = x <= y;
 if (ntest) goto Else;
 result = x-y;
 goto Done;
 Else:
 result = y-x;
 Done:
 return result;
}

8
9

Jumping in ASM is the C goto analog

¢ jX target
§ Jump to different part of code depending on condition codes
§ target is a Label or *Operand

jX Condition Description
jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned >)

jb CF Below (unsigned <)

9

3

10

Conditional Branch Example (with jumps)

long absdiff
 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:
 cmpq %rsi, %rdi # x:y
 jle .L4
 movq %rdi, %rax
 subq %rsi, %rax
 ret
.L4: # x <= y
 movq %rsi, %rax
 subq %rdi, %rax
 ret

¢ Generation
> gcc –Og -S –fno-if-conversion absdiff.c

Register Use(s)
%rdi Argument x

%rsi Argument y

%rax Return value

we’ll come back to this.

10
11

Practice on Your Own

¢ Rewrite the following assembly code into C code:

fcn:
 movq $4, %rsi
 cmpq %rsi, %rdi
 sete %al
 movzbl %al, %eax
 ret

Note: Function return values are placed in the register %rax

11

12

jX Is a Powerful Tool

¢ We can convert many C control flow constructs to equivalent C
code that contains goto statements

¢ We can convert C code with goto statements into ASM with jX
¢ We will spend much of this and next lecture doing this mapping

¢ But first, we will talk about conditional moves

C code
Equivalent
C code w/
goto

Assembly
code w/
jmp

12
13

C Code
val = Test ? Then_Expr : Else_Expr;

Goto Version
ntest = !Test;

 if (ntest) goto Else;
 val = Then_Expr;
 goto Done;
Else:
 val = Else_Expr;
Done:
 . . .

General Conditional Expression Translation
(Using Branches)

Conversion strategy:
§ Create separate code regions for

then & else expressions
§ Execute appropriate one

val = x > y ? x-y : y-x;

13

4

14

C Code
val = Test
 ? Then_Expr
 : Else_Expr;

“Goto” Version
result = Then_Expr;

 eval = Else_Expr;
 nt = !Test;
 if (nt) result = eval;
 return result;

General Conditional Expression Translation
(Using Conditional Moves)

¢ Conditional Move Instructions
§ Instruction supports:

if (Test) Dest ß Src
§ Supported in post-1995 x86 processors
§ GCC tries to use them

§ But, only when known to be safe

¢ Why?
§ Branches (jumps) are very disruptive to

instruction flow through pipelines
§ Performance relies on good predictions
§ Conditional moves do not require

control transfer!

14
15

Conditional Move Example

absdiff:
movq %rdi, %rax # x
subq %rsi, %rax # result = x-y
movq %rsi, %rdx # y
subq %rdi, %rdx # eval = y-x
cmpq %rsi, %rdi # x:y
cmovle %rdx, %rax # if <=, result = eval
ret

long absdiff
 (long x, long y) {
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

Register Use(s)
%rdi Argument x

%rsi Argument y

%rax Return value

Generation
> gcc –O1 –S absdiff.c Notice the compile flags!

15

16

Expensive Computations
Bad Cases for Conditional Move

¢ Both values get computed
¢ Only makes sense when computations are

very simple

val = Test(x) ? Hard1(x) : Hard2(x);

Risky Computations

¢ Both values get computed
¢ May have undesirable effects

val = p ? *p : 0;

Computations with side effects

¢ Both values get computed
¢ Must be side-effect free

val = x > 0 ? x*=7 : x+=3;

Bad Performance

Unsafe

Illegal

16
17

Today: Machine-Level Programming: Control

¢ Intro to data-dependent control
§ Condition codes
§ Conditional branches
§ Conditional data
§ Loops
§ Switch Statements

17

5

18

C Code
long pcount_do
 (unsigned long x) {
 long result = 0;
 do {
 result += x & 0x1;
 x >>= 1;
 } while (x);
 return result;
}

Goto Version
long pcount_goto
 (unsigned long x) {
 long result = 0;
 loop:
 result += x & 0x1;
 x >>= 1;
 if(x)
 goto loop;
 return result;
}

“Do-While” Loop Example

¢ Count number of 1’s in argument x (bitcount or “popcount”)
¢ Use conditional branch to either continue looping or to exit loop

18
19

Goto Version
“Do-While” Loop Compilation

movl $0, %eax # result = 0
.L2: # loop:

movq %rdi, %rdx
andl $1, %edx # t = x & 0x1
addq %rdx, %rax # result += t
shrq %rdi # x >>= 1
jne .L2 # if (x) goto loop
rep; ret

long pcount_goto
 (unsigned long x) {
 long result = 0;
 loop:
 result += x & 0x1;
 x >>= 1;
 if(x)
 goto loop;
 return result;
}

Register Use(s)
%rdi Argument x

%rax result

19

