
1

1

Machine Level Programming: Basics (III)

CSCI 237: Computer Organization
13th Lecture, Monday, October 6

Kelly Shaw

1
2

Administrative Details
¢ Lab #3 checkpoint due Tuesday at 11pm
§ Watch the video for getting started with the bomb

¢ Read CSAPP 3.5-3.6
¢ Colloquium Friday at 2:35pm in Wege
§ What I did this summer (industry)

2

3

Last Time: Machine-Level Programming:
Basics
¢ Dynamic memory allocation
¢ Assembly instruction basics: registers, operands, move

3
4

Today: Machine-Level Programming: Basics

¢ Assembly instruction basics: registers, operands, move
¢ Arithmetic and logical operations
¢ Intro to data-dependent control
§ Condition codes
§ Conditional branches
§ Conditional data
§ Loops
§ Switch Statements

4

2

5

Simple Memory Addressing Modes

¢ Normal (R) Mem[Reg[R]]
§ Register R specifies memory address
§ Aha! Pointer dereferencing in C

movq (%rcx),%rax

¢ Displacement D(R) Mem[Reg[R]+D]
§ Register R specifies start of memory region
§ Constant displacement D specifies offset (which can be

positive or negative)

movq 8(%rbp),%rdx

5
6

movq 8(%rbp), %rdx

100
long arr_long[4];
long tmp = arr_long[1];

Assume %rbp holds 100
8B each

6

7

Complete Memory Addressing Modes
¢ Most General Form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

§ D: Constant “displacement” stored in 1, 2, or 4 bytes
§ Rb: Base register: Any of 16 integer registers
§ Ri: Index register: Any, except for %rsp
§ S: Scale: 1, 2, 4, or 8

¢ Special Cases
 (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
 (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

7
8

movq 8(%rbp, %rdi, 8), %rdx

100
long arr_long[4];
long tmp = arr_long[3];

Assume %rbp holds 100, %rdi holds 2 8B each

8

3

9

Practice On Your Own

100
long arr_long[4];

// Write code in assembly
arr_long[2] = 7;

Assume %rbp holds 100

8B each

9
10

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Address Computation Examples

Expression Address Computation Address

0x8(%rdx) 0xf000 + 0x8 0xf008

(%rdx,%rcx) 0xf000 + 0x100 0xf100

(%rdx,%rcx,4) 0xf000 + 4*0x100 0xf400

0x80(,%rdx,2) 2*0xf000 + 0x80 0x1e080

%rdx 0xf000

%rcx 0x0100

Most General Form
 D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

D: Constant “displacement” 1, 2, or 4 bytes
Rb: Base register: Any of 16 integer registers
Ri: Index register: Any, except for %rsp
S: Scale: 1, 2, 4, or 8

10

11

Pushing and Popping Stack Data

¢ In addition to mov, can move data to and from program stack
using push and pop
§ Review: Stacks are LIFO (Last In First Out)
§ Usually drawn upside down (“top” of stack is on bottom of pic)
§ The stack is part of memory
§ Registers are part of CPU

¢ %rsp holds address of top element
¢ push: Add data to top of stack
¢ pop: Remove data from stack

11
12

Today: Machine-Level Programming: Basics

¢ Assembly instruction basics: registers, operands, move
¢ Arithmetic and logical operations
¢ Intro to data-dependent control
§ Condition codes
§ Conditional branches
§ Conditional data
§ Loops
§ Switch Statements

12

4

13

Some Arithmetic Operations
¢ Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest = Dest - Src
imulq Src,Dest Dest = Dest * Src
salq Src,Dest Dest = Dest << Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

¢ Watch out for argument order! Src,Dest
(Warning (again): Intel docs use “op Dest,Src”)

¢ No distinction between signed and unsigned int

13
14

Some Arithmetic Operations

¢ One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest = Dest - 1
negq Dest Dest = - Dest
notq Dest Dest = ~Dest

¢ See book for more instructions

14

16

Address Computation Instruction
¢ leaq Src, Dst

§ “Load Effective Address” – copy memory address in src to dst
§ Src is an address
§ Set Dst to address denoted by expression

¢ Uses
§ Computing addresses without a memory reference

§ E.g., translation of p = &x[i];
§ Computing arithmetic expressions of the form x + k*y

§ k = 1, 2, 4, or 8
¢ Example
long m12(long x)
{
 return x*12;
}

leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2

Converted to ASM by compiler:

16
17

Arithmetic Expression Example

Instructions
§ leaq: address computation
§ salq: left shift
§ imulq: multiplication

§ Only used once

long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

arith:
 leaq (%rdi,%rsi), %rax
 addq %rdx, %rax
 leaq (%rsi,%rsi,2), %rdx
 salq $4, %rdx
 leaq 4(%rdi,%rdx), %rcx
 imulq %rcx, %rax
 ret

17

5

18

Understanding Arithmetic Expression
Example

long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

arith:
 leaq (%rdi,%rsi), %rax # t1
 addq %rdx, %rax # t2
 leaq (%rsi,%rsi,2), %rdx
 salq $4, %rdx # t4
 leaq 4(%rdi,%rdx), %rcx # t5
 imulq %rcx, %rax # rval
 ret

Register Use(s)
%rdi Argument x

%rsi Argument y

%rdx Argument z,
t4

%rax t1, t2, rval

%rcx t5

18
19

Practice on Your Own

¢ Rewrite the following C code in assembly:

¢ Rewrite the following assembly code in C code:

void fcn(long *arrPtr)
{
 arrPtr[2] = arrPtr[1] + arrPtr[0];
}

fcn:
 leaq (%rdi, %rsi, 8), %rax
 movq (%rax), %r8
 addq $16, %r8
 movq %r8, (%rax)
 ret

Note: Remember %rdi stores the first parameter and %rsi the second

19

20

Practice

¢ Rewrite the following C code in assembly:

long fcn(long *x, long *y, int num)
{
 long temp = x[num];
 long result = temp + y[num-temp];
 return result;
}

Note: Remember %rdi stores the first parameter and %rsi the second

20
21

Today: Machine-Level Programming: Basics

¢ Assembly instruction basics: registers, operands, move
¢ Arithmetic and logical operations
¢ Intro to data-dependent control
§ Condition codes
§ Conditional branches
§ Conditional data
§ Loops
§ Switch Statements

21

6

22

Data-Dependent Control (Ch 3.6)

What about non-straight-line code?

¢ Control: Condition codes
¢ Conditional branches
¢ Loops
¢ Switch Statements

22
23

Processor State (x86-64, Partial)

¢ Information about
currently executing
program
§ Temporary data

(%rax, …)
§ Location of runtime stack

(%rsp)
§ Location of current code

control point
(%rip, …)

§ Status of recent tests
(CF, ZF, SF, OF)

%rip

Registers

Instruction pointer

CF ZF SF OF Condition codes

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

Current stack top

23

24

Condition Code Registers

We have several 1-bit condition registers.
The most useful ones are:

§ [Condition Code]
§ Set to 1 if the most recent op …

§ [CF] carry flag
§ Generated a carry out of most significant bit

§ [ZF] Zero flag
§ Yielded 0

§ [SF] Sign flag
§ Yielded a negative value

§ [OF] Overflow flag
§ Caused a twos-complement overflow (positive or negative)

24
25

Setting Condition Code Registers

Condition codes are set after each arithmetic or logical op.
Condition codes are also set by compare and test instructions:
§ cmpX S1, S2

§ Like subX S1 S2 : Calculates (S2 – S1), but does not overwrite S2
§ testX

§ Like AND S1 S2 : Calculates (S1 & S2), but does not overwrite S2

Note: Condition codes are not altered by leaq!

25

7

26

Reading Condition Codes

¢ Three ways to “access” condition codes in assembly. We will go
over them in detail:
1. Operations that set a byte to 0/1 based on some combination of the

condition codes
2. Operations that “jump” to some part of program based on condition

codes
3. Operations that transfer data only if some condition codes are set

We are going to do a lot of conversion between C and assembly, and
between assembly and C. The practice problems and examples in the
textbook are really helpful!

26

