
1

1

Machine Level Programming: Basics and
Dynamic Memory Allocation

CSCI 237: Computer Organization
11th Lecture, Monday, Sept. 30

Kelly Shaw

1
2

Administrative Details
¢ Lab #2 due today at 11pm
§ Any questions?

¢ Read CSAPP 3.1-3.4
¢ Final Exam
§ Wednesday, December 11, 09:30 AM

2

3

Last Time: Floating Point and Machine-Level
Programming: Basics
¢ Floating point in C
¢ Summary
¢ History of Intel processors and architectures
¢ Instruction Set Architecture (ISA)

3
4

Today: Machine-Level Programming: Basics

¢ Instruction Set Architecture (ISA)
¢ Assembly instruction basics: registers, operands, move
¢ Dynamic memory allocation

4

2

5

Definitions

¢ Architecture: (also ISA: instruction set architecture) The parts of
a processor design that one needs to understand for writing
assembly/machine code.
§ Examples: instruction set specification, registers

¢ Microarchitecture: Implementation of the architecture
§ Examples: cache sizes and core frequency

¢ Code Forms:
§ Machine Code: The byte-level programs that a processor executes
§ Assembly Code: A text representation of machine code

¢ Example ISAs:
§ Intel: x86, IA32, Itanium, x86-64
§ ARM: Used in almost all mobile phones

5
6

CPU

Assembly/Machine Code View

Programmer-Visible State
§ PC: Program counter

§ Address of next instruction
§ Called “RIP” (x86-64)

§ Register file
§ Heavily used program data

§ Condition codes
§ Store status information about most

recent arithmetic or logical operation
§ Used for conditional branching

PC
Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

§Memory
§ Byte addressable array
§ Code and user data
§ Stack to support procedures

6

7

Assembly Characteristics: Data Types
¢ “Integer” data of 1, 2, 4, or 8 bytes
§ Data values
§ Addresses (untyped pointers)

¢ Floating point data of 4, 8, or 10 bytes

¢ Code: Byte sequences encoding series of instructions

¢ No aggregate types such as arrays or structures
§ Just contiguously allocated bytes in memory

7
8

%rsp

x86-64 Integer Registers

§ Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
§ Not part of memory (or cache)

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

8

3

9

Some History: IA32 Registers
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer
base
pointer

Origin
(mostly obsolete)

9
10

Assembly Characteristics: Operations

¢ Transfer data between memory and register
§ Load data from memory into register
§ Store register data into memory

¢ Perform arithmetic function on register or memory data

¢ Transfer control
§ Unconditional jumps to/from procedures
§ Conditional branches

10

11

Moving Data (Ch 3.4)
¢ Moving Data
movq Source, Dest

¢ Operand Types
§ Immediate: Constant integer data

§ Example: $0x400, $-533
§ Like C constant, but prefixed with ‘$’
§ Encoded with 1, 2, or 4 bytes

§ Register: One of 16 integer registers
§ Example: %rax, %r13
§ But %rsp reserved for special use
§ Others have special uses for particular instructions

§ Memory: 8 consecutive bytes of memory at address given by register
§ Simplest example (notice parentheses): (%rax)
§ Various other “addressing modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%rN

Warning: Intel docs use
mov Dest, Source

11
12

Moving Data (Ch 3.4)
¢ Moving Data
movq Source, Dest

¢ Operand Types
§ Immediate: Constant integer data

§ Example: $0x400, $-533
§ Like C constant, but prefixed with ‘$’
§ Encoded with 1, 2, or 4 bytes

§ Register: One of 16 integer registers
§ Example: %rax, %r13
§ But %rsp reserved for special use
§ Others have special uses for particular instructions

§ Memory: 8 consecutive bytes of memory at address given by register
§ Simplest example (notice parentheses): (%rax)
§ Various other “addressing modes”

%rax
%rcx
%rdx
%rbx
%rsi
%rdi
%rsp
%rbp

%rN

12

4

13

Memory Aside: Data

¢ Each program has memory
associated with it where data
is stored
§ # of bits for addresses determines

total number of addressable
bytes

¢ That data is just like an array
of memory cells
§ Smallest addressable component

is a byte
§ Each cell is addressable by its

byte location

Memory
0x0

0x7fffffff
argc is 4B

0x7ff3fa8bc

13
14

Memory Aside: Data

¢ Each program has memory
associated with it where data
is stored
§ # of bits for addresses determines

total number of addressable
bytes

¢ That data is just like an array
of memory cells
§ Smallest addressable component

is a byte
§ Each cell is addressable by its

byte location

Memory
0x0

0x7fffffff

8 char string

0x5ffffd420

14

15

Memory Aside: Instructions

¢ Each program has memory
associated with it where data
is stored
§ # of bits for addresses determines

total number of addressable
bytes

¢ That data is just like an array
of memory cells
§ Smallest addressable component

is a byte
§ Each cell is addressable by its

byte location

¢ Instructions are also allocated
space in memory

Memory
0x0

0x7fffffff

4 byte instr.

0xf5fd780

15
16

Address Space

¢ Each process has an address space
¢ The address space is divided into

segments:
§ Text

§ Instructions
§ Initialized Data

§ Globals
§ Uninitialized Data or Heap

§ new/malloc allocates space here

§ Stack
§ local variables are given space here

Stack

Text
Initialized Data

Uninitialized Data
(Heap)

0x0

0x7fffffff

Reserved

0x1000000
0x40000

16

5

17

Dynamic Memory Allocation

¢ Allocate memory in a separate part of
address space so it can persist across function
calls
§ Heap

¢ Dynamic memory allocator
§ Software that keeps track of all memory allocated in

heap
§ Request a chunk of contiguous memory from

allocator
§ malloc()

§ Tell allocator when finished with memory so it can
reuse that memory
§ free()

Stack

Text
Initialized Data

Uninitialized Data
(Heap)

0x0

0x7fffffff

Reserved

0x1000000
0x40000

17
18

malloc() and free()
¢ void *malloc(size_t size);

§ Specify # of bytes desired as argument
§ Returns address of first byte in contiguous set of bytes

allocated
¢ void free(void *ptr);

§ Specify address of first byte of data returned by previous call
to malloc

¢ void *

§ Generic pointer since malloc doesn’t know the data type the
memory is going to be used to store

18

19

Integer Array example (Static)
int array[5];

// Memory contains garbage values,
// so need to initialize
for(int i = 0; i < 5; i++){
 array[i] = 0;
}

array

0xd100

20 B (5 * size of int (4B))

4 -3 20 17 80 0 0 0 0

19
20

Integer Array example
int *array;
array = (int*)malloc(5 * sizeof(int));

// Memory contains garbage values,
// so need to initialize
for(int i = 0; i < 5; i++){
 array[i] = 0;
}

free(array);

0x100

array

8 B (size of address)

0xd100

20 B (5 * size of int (4B))

0xd100 4 -3 20 17 80 0 0 0 0

20

6

21

char Array example (Static)
char array[3] = “Hi”;

array

0xd100

3 B (3 * size of char (1B))

17 6 9‘H’ ‘I’ ’\0’

21
22

char Array example
char *array;
array = (char*)malloc((1+strlen(”Hi”)) * sizeof(char));

strcpy(array, “Hi”);

free(array);

0x100

array

8 B (size of address)

0xd100

3 B (3 * size of char (1B))

0xd100 17 6 9‘H’ ‘I’ ’\0’

22

