Floating Point (part III) and Machine Level Programming: Basics

CSCI 237: Computer Organization 10th Lecture, Friday, Sept. 27

Kelly Shaw

1

Last Time: Floating Point (part II)

- IEEE FP standard (normalized and denormalized values)
- Tiny Floating Point Example
- Floating point in C
- Summary

Administrative Details

- Lab #2 due Tuesday at 11pm
- Any questions?
- Quiz on Glow due today at 2:30pm
- Read CSAPP 3.1-3.4
- Colloquium talk on Friday at 2:35pm in Wege
- Sam Thomas, Brown University
- Towards a Practical Secure Memory for Modern Deployments

2

Today: Floating Point and Machine-Level Programming: Basics

- Floating point in C
- Summary
- History of Intel processors and architectures

v = (−1)^s M 2^E C float Decoding Example E = exp - biasfloat: 0xC0A00000 Bias = $2^{k-1} - 1 = 127$ 1000 0001 010 0000 0000 0000 0000 0000 1 8-bits 23-bits E = **S** = M = v = (−1)^s M 2^E 1110

Floating Point Puzzles For each of the following C expressions, either: Argue that it is true for all argument values Explain why not true • x == (int)(float) x X 1 x == (int)(double) x 1 f == (float)(double) f int x = ...; X • d == (double)(float) d float f = ...; 1 • f == -(-f);double d = ...;X $\cdot 2/3 == 2/3.0$ 1 • d * d >= 0.0 Assume neither • (d+f)-d == f X d nor f is NaN

14

Practice on Your Own

- What is the IEEE 754 single precision encoding for the decimal number -28.6125?
- What is the decimal value if the hexadecimal number 0xFA400000 is interpreted as 32 floating point encoding?
- If these hexadecimal number are interpreted as a 32 bit floating point numbers, are they denormalized, normalized, or special?
 - 0x80AF4203
 - 0x8102C00D
 - OxFFAF0F10
 - 0xFACE4789

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers
 Single precision: 32 bits

s ex	:p	frac
1	8-bits	23-bits
ouble	e precision	: 64 bits
s ex	precision	: 64 bits

Transist	ors						
Intel x86 Evolution: Milestones 🧼 🥋	1						
	-						
Name Date Transistors MHz	imputerhope.co						
■ 8086 1978 29K 5-10							
First 16-bit Intel processor. Basis for IBM PC & DOS							
1MB address space							
■ 386 1985 275K 16-33							
First 32 bit Intel processor , referred to as IA32							
Added "flat addressing", capable of running Unix							
Pentium 4E 2004 125M 2800-3800							
First 64-bit Intel x86 processor, referred to as x86-64							
Core 2 2006 291M 1060-3500							
First multi-core Intel processor (core = CPU)							
Core i7 2008 731M 1700-3900							
Four cores	19						

Intel x86 Processors Dominate laptop/desktop/server market (for now) Evolutionary design Backwards compatible up until 8086, introduced in 1978 Added more features as time goes on Complex instruction set computer (CISC) Many different instructions with many different formats But, only small subset encountered with Linux programs Hard to match performance of Reduced Instruction Set Computers (RISC) But, Intel has done just that! In terms of speed. Less so for low power.

Intel x86 Processors, cont.								
Past Generations	Р	rocess techno	logy					
1 st Pentium Pro 1	1995	600 nm						
1 st Pentium III 1	1999	250 nm						
1 st Pentium 4 2	2000	180 nm						
1st Core 2 Duo 2	2006	65 nm	Process technology dimension					
Recent Generation	ns	= width of narrowest wires						
1. Nehalem 2	2008	45 nm	(10 hm ≈ 100 atoms wide)					
2. Sandy Bridge 2	2011	32 nm						
3. Ivy Bridge 2	2012	22 nm	XXX 9 2295 Contraction					
4. Haswell 2	2013	22 nm	NN BARRAN					
5. Broadwell 2	2014	14 nm						
6. Skylake 2	2015	14 nm						
7. Kaby Lake 2	2016/7	14 nm						
8. Coffee Lake 2	2017	14nm						
9. C.L. Refreshed 2	2018	14nm						
10. Ice Lake	2019	10nm						

21

22

Our Coverage IA32 The traditional x86 X86-64 The standard Spec hello.c Spec -m64 hello.c Presentation Book covers x86-64 Web aside on IA32 We will only cover x86-64

Variables: Source Code \rightarrow Compiler Internal Representation \rightarrow Executable

- Source code variable type
 - Determines how many bytes needed to represent variables
 - Determines how bits in bytes should be interpreted
- Compiler's internal representation
 - For each variable, keeps track of variable type and name
 - For each variable, determines # of bytes needed and determines memory locations
- Compiler generates executable that is all memory locations/registers and machine language instructions
- Names and types are lost. Everything is just memory addresses and registers.
- Information about size and types is implied by the size of bytes and what versions of instructions are used (different machine instructions for different variable types) by compiler in generating code

