
1

1

Floating Point (part III) and Machine
Level Programming: Basics

CSCI 237: Computer Organization
10th Lecture, Friday, Sept. 27

Kelly Shaw

1
2

Administrative Details
¢ Lab #2 due Tuesday at 11pm
§ Any questions?

¢ Quiz on Glow due today at 2:30pm
¢ Read CSAPP 3.1-3.4
¢ Colloquium talk on Friday at 2:35pm in Wege
§ Sam Thomas, Brown University
§ Towards a Practical Secure Memory for Modern Deployments

2

3

Last Time: Floating Point (part II)

¢ IEEE FP standard (normalized and denormalized values)
¢ Tiny Floating Point Example
¢ Floating point in C
¢ Summary

3
4

Today: Floating Point and Machine-Level
Programming: Basics
¢ Floating point in C
¢ Summary
¢ History of Intel processors and architectures

4

2

5

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Distribution of Values

¢ 6-bit IEEE-like format
§ e = 3 exponent bits
§ f = 2 fraction bits
§ Bias is 23-1-1 = 3

¢ Notice how the distribution gets denser toward zero.

8 values

s exp frac

1 3-bits 2-bits

5
6

Distribution of Values (close-up view)

¢ 6-bit IEEE-like format
§ e = 3 exponent bits
§ f = 2 fraction bits
§ Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

6

7

Visualization: Floating Point Encodings

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

7
8

Special Properties of the IEEE Encoding

¢ FP Zero Same as Integer Zero
§ All bits = 0

¢ Can (Almost) Use Unsigned Integer Comparison
§ Must first compare sign bits
§ Must consider −0 = 0
§ NaNs problematic

§ Will be greater than any other values
§ What should comparison yield?

§ Otherwise OK
§ Denorm vs. normalized
§ Normalized vs. infinity

8

3

9

Today: Floating Point and Machine-Level
Programming: Basics
¢ Floating point in C
¢ Summary
¢ History of Intel processors and architectures

9
10

C float Decoding Example
float: 0xC0A00000

binary:

1 8-bits 23-bits

E =

S = 1 -> negative number

M = 1.010 0000 0000 0000 0000 0000

M = 1 + 1/4 = 1.25

v = (–1)s M 2E

v = (–1)s M 2E

E = exp – bias

10

11

1 8-bits 23-bits

C float Decoding Example

E =
S = 1 -> negative number

M = 010 0000 0000 0000 0000 0000
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

Bias = 2k-1 – 1 = 127

v = (–1)s M 2E
E = exp – bias

11
12

C float Decoding Example
float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

E =
S =
M =
M = 1 + 1/4 = 1.25

v = (–1)s M 2E

Bias = 2k-1 – 1 = 127

exp – bias = 129 – 127 = 2
1 (negative number)
1.010 0000 0000 0000 0000 0000

= (-1)1 * 1.25 * 22 = -5

v = (–1)s M 2E

E = exp – bias

12

4

13

Floating Point in C

¢ C Guarantees Two Levels
§float single precision
§double double precision

¢ Conversions/Casting
§ Casting between int, float, and double changes bit representation
§ double/float → int

§ Truncates fractional part
§ Like rounding toward zero
§ Not defined when out of range or NaN: Generally sets to TMin

§ int → double
§ Exact conversion, as long as int has ≤ 53 bit word size

§ int → float
§ Will round according to rounding mode

13
14

Floating Point Puzzles

¢ For each of the following C expressions, either:
§ Argue that it is true for all argument values
§ Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f
• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d * d >= 0.0
• (d+f)-d == f

int x = …;

float f = …;
double d = …;

Assume neither
d nor f is NaN

14

15

Practice on Your Own

¢ What is the IEEE 754 single precision encoding for the decimal
number -28.6125?

¢ What is the decimal value if the hexadecimal number
0xFA400000 is interpreted as 32 floating point encoding?

¢ If these hexadecimal number are interpreted as a 32 bit floating
point numbers, are they denormalized, normalized, or special?
§ 0x80AF4203
§ 0x8102C00D
§ 0xFFAF0F10
§ 0xFACE4789

15
16

Summary

¢ IEEE Floating Point has clear mathematical properties
¢ Represents numbers of form M x 2E

¢ One can reason about operations independent of
implementation
§ As if computed with perfect precision and then rounded

¢ Not the same as real arithmetic
§ Violates associativity/distributivity
§ Makes life difficult for compilers & serious numerical applications

programmers

16

5

17

Today: Floating Point and Machine-Level
Programming: Basics
¢ Floating point in C
¢ Summary
¢ History of Intel processors and architectures

Major shift:
Data representation (Ch. 2)

to
Machine instructions and assembly programming (Ch. 3)

17
18

Intel x86 Processors

¢ Dominate laptop/desktop/server market (for now)

¢ Evolutionary design
§ Backwards compatible up until 8086, introduced in 1978
§ Added more features as time goes on

¢ Complex instruction set computer (CISC)
§ Many different instructions with many different formats

§ But, only small subset encountered with Linux programs
§ Hard to match performance of Reduced Instruction Set Computers (RISC)
§ But, Intel has done just that!

§ In terms of speed. Less so for low power.

18

19

Intel x86 Evolution: Milestones

Name Date Transistors MHz
¢ 8086 1978 29K 5-10

§ First 16-bit Intel processor. Basis for IBM PC & DOS
§ 1MB address space

¢ 386 1985 275K 16-33
§ First 32 bit Intel processor , referred to as IA32
§ Added “flat addressing”, capable of running Unix

¢ Pentium 4E 2004 125M 2800-3800
§ First 64-bit Intel x86 processor, referred to as x86-64

¢ Core 2 2006 291M 1060-3500
§ First multi-core Intel processor (core = CPU)

¢ Core i7 2008 731M 1700-3900
§ Four cores

19
20

Moore's law is the observation that
the number of transistors in a
dense integrated circuit doubles
approximately every two years.

20

6

21

Intel x86 Processors, cont.
¢ Past Generations

§ 1st Pentium Pro 1995 600 nm
§ 1st Pentium III 1999 250 nm
§ 1st Pentium 4 2000 180 nm
§ 1st Core 2 Duo 2006 65 nm

¢ Recent Generations
1. Nehalem 2008 45 nm
2. Sandy Bridge 2011 32 nm
3. Ivy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
7. Kaby Lake 2016/7 14 nm
8. Coffee Lake 2017 14nm
9. C.L. Refreshed 2018 14nm
10. Ice Lake 2019 10nm

Process technology

Process technology dimension
= width of narrowest wires
(10 nm ≈ 100 atoms wide)

21
22

Practice Together
¢ Consider the hexadecimal value 0xC295D000. Assume this 32b binary number is a
IEEE single precision floating point number. What is its decimal floating point value?

22

23

2019 State of the Art: Ice Lake
¢ Mobile Device: Core i7

§ 1-2.3 GHz
§ Turbo (3.8-4.1 GHz)

§ 9-28 W
§ Integrated Intel Gen 11 GPU
§ 2-4 CPUs

https://www.servethehome.com/intel-ice-lake-era-with-microarchitecture-and-gen11-gpu-improvements/

23
24

Our Coverage

¢ IA32
§ The traditional x86

¢ x86-64
§ The standard
§ > gcc hello.c

§ > gcc –m64 hello.c

¢ Presentation
§ Book covers x86-64
§ Web aside on IA32
§ We will only cover x86-64

24

7

25

Today: Floating Point and Machine-Level
Programming: Basics
¢ Floating point in C
¢ Summary
¢ History of Intel processors and architectures
¢ Instruction Set Architecture (ISA)

25
26

Levels of Abstraction

C programmer

Assembly programmer

Computer Designer

C code

Caches, clock freq, layout, …

Computer
scientists love

layers…

26

27

Variables: Source Code → Compiler Internal
Representation → Executable
¢ Source code variable type
§ Determines how many bytes needed to represent variables
§ Determines how bits in bytes should be interpreted

¢ Compiler’s internal representation
§ For each variable, keeps track of variable type and name
§ For each variable, determines # of bytes needed and determines memory

locations

¢ Compiler generates executable that is all memory
locations/registers and machine language instructions
§ Names and types are lost. Everything is just memory addresses and

registers.
§ Information about size and types is implied by the size of bytes and what

versions of instructions are used (different machine instructions for
different variable types) by compiler in generating code

27
28

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Machine Code
§ Code in files p1.c p2.c
§ Compile with command: gcc –Og p1.c p2.c -o p

§ Use basic optimizations (-Og)
§ Put resulting binary in file p

28

