Memory and Floating Point (part 1)

CSCl 237: Computer Organization
8th Lecture, Monday, Sept. 23

Kelly Shaw

|
Last Time: Arithmetic Operations

m Integers (Ch 2.2-2.3)

= Addition, multiplication, shifting (Ch 2.3)

|
Administrative Details

m Lab #2 checkpoint Tuesday at 11pm
" What questions do you have?

= Read CSAPP 2.4-2.5

|
Today: Floating Point (part 1)

m Integers (Ch 2.2-2.3)

. shifting (Ch 2.3)
m Byte-oriented Memory Organization

= Byte-ordering
m Background: Fractional binary numbers
|

Signed Power-of-2 Divide with Shift

m Operation
" u >> kgives |_u / 2"J
= Uses arithmetic shift
= Rounds wrong direction when u < 0 (shzuld round toward 0!)

u [T eee TTT e TT1 Binary Point

Operands: yFo

| 2k [o["e<sToliJo +**To[o]

7
Division: w/2¢ [TTTT T e T T 111
Result: RoundDown(u / 2X) [T TTTT T o 11
Division | Computed Hex Binary

y -15213 -15213 C4 93| 11000100 10010011
y >1 -zgﬂﬁi E2 49| 11100010 01001001
y >> 4 -950.81 - FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Signed Power-of-2 Divide

m Operation behavior?
= Want Lu / 2¢] for positive quotients (Round Toward 0)
= Want [u / 2] for negative quotients (Round Toward 0)
= Compute as L (u+2k-1) / 2« |
= InC: (u + (1<<k)-1) >> k
= 2k-1 Biases dividend toward 0

Case 1: No rounding k
Dividend: U [A T eee T Tof <<~ Jofo]
+2%—1 [o] <« Jol0]
[A] T eee [] Binary Point
Divisor: | 2k [0 eee Jo[iJo] «.« Jolo]
[w/2¢ | Eee A e T e
Biasing has no effect

Divide by Power of 2 (k = 2, divide by 4)
16/4=-4 17/4=-4.25 18/4=-45 -19/4=-4.75
1100 00 101111 1011 10 101101
Divide by 111100 @ 111011 © 111011 ©® 111011 ©
Shifting 2
1100 00 101111 101110 101101
Add bias + 000011 + 000011 + 000011 + 000011
1100 11 1100 10 1100 01 1100 00
Divideby 111100 @ 111100 @ 111100 @ 111100 @
Shifting 2
4 4 4 4
6

Correct Signed Power-of-2 Divide (Cont.)

Case 2: Rounding
k
Dividend: y O eee TTTeeeTT]
+2k_1 eoe eoe
Gl T ... T TFeeTIT
Incremented by 1))
Binary Point
Divisor: | 2k

[u/2¢| AT’

Incremented by 1

Biasing adds 1 to final result

s |
Practice On Your Own
= What would be be printed?

char ¢ = 128;

char d = 3;
char e = ¢ * d;
printf (“e: %d \n”, e);

char s = 42;

char rl = s / 8;

char r2 = s >> 3;

printf (Yrl: %d r2: %d \n”, rl, r2);

Byte-Oriented Memory Organization

m Programs refer to data by address
" Conceptually, envision memory as a very large array of bytes
= (In reality, it's not, but we can think of it that way...)
" An address is like an index into that array
= Each variable is assigned an address

= “Type” of a variable tells us how to interpret bytes at the variable’s
associated address

m Note: system provides private “address spaces” to each “process”
® Think of a process as a program being executed
" So, a program can clobber its own data, but not that of others

11

|
Today: Floating Point (part I)

m Integers (Ch 2.2-2.3)

.
m Byte-oriented Memory Organization

= Byte-ordering
m Background: Fractional binary numbers
[
[

10

Machine Words

m Any given computer has a “Word Size”
" Word size is the size of an address (pointer)

m Until recently”, most machines used 32 bit words (4 bytes)

® This limits addresses (memory size) to 4GiB (232 bytes)

= Now, most” machines have 64-bit word size
" Potentially, could have 18 EB (exabytes) of addressable memory
" That’s 18.4 X 1018

= Machines still support multiple data formats
" Primitive types are always an integral number of bytes
= Fractions (e.g., char, short) or multiples (e.g., long 1int) of word size

12

Word-Oriented Memory Organization
64-bit 32-bit
. . Byt Addr.
m Addresses Specify Byte Locations Words Words) ¢° "
= Address “points to” first byte in word 0000
. Addr
= Addresses of successive words always = 0001
differ by 4 (32-bit) or 8 (64-bit) 0000 0002
Addr 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
Addr 0008 0010
= 0011
2008 0012
Addr 0013
0012 0014
0015
13

13

Aside: Byte Ordering Example

m Example
= Let variable x have 4-byte value of 0x01234567
® The address given by &X is 0x100

Big Endian 0x100 0x101 0x102 0x103
| | [o1 [23] 45| 67 | |

Little Endian 0x100 0x101 0x102 0x103
| | [67] 45 | 23 | o1 | |

Big Endian: Least significant byte has highest address

Little Endian: Least significant byte has lowest address

15

Aside: Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?
m Conventions
® Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Windows
= Least significant byte has lowest address

14

|
Aside: Byte ordering Takeaway

m Endianness matters...
m But you really just need to be aware of it

m Consider endianness any time you store data for interpretation
by another program in the future

= Thankfully, most network and I/O libraries contain “serialization”
and “deserialization” functions that take care of translating
endianness for you

16

|
Today: Floating Point (part I)

m Integers (Ch 2.2-2.3)
® Representation: unsigned and signed
= Conversion, casting
® Expanding, truncating
= Addition, multiplication, shifting (Ch 2.3)
m Byte-oriented Memory Organization
= Byte-ordering
m Background: Fractional binary numbers
m |[EEE FP standard (normalized and denormalized values)

m Examples

17

|
Fractional binary numbers

m What is decimal representation of 1011.101,?

19

|
How Can We Represent Numbers with

Fractional Components in Hardware?

= How do we express decimal numbers in binary?
m Examples:

= 3.14

=2/3

= 1.3*%10%5

= -7.2*% 10%°

18

Fractional Decimal Numbers
100

107

100
XX ’_10
1

da | di | dogd1|d-|d-

/10 —
1/100 4 oo
1/1000

107
= Digits to right of “decimal point” represent fractional powers of 10

di1

‘ di di ‘

" Represents rational number: -
Z d,x10k

k=—j

20

Fractional Binary Numbers

2i

2i-1

bll

b |

b

4
2
|—1
bz‘bl‘bl
e :
1/8

27
= Bits to right of “binary point” represent fractional powers of 2

= Represents rational number: ‘
Z by X 2k

k=—j

2

21

Fractional Binary Numbers: Examples

u Value Representation
23/4 =53/4 =4 +1+ ;-+ 1— 101.11;
23/8 =27/8 =2+ -+ -+ 10.111:

1 1 1
23/16 = 1 7/16 = 1 + -+ =+ — 1.0111

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
® Numbers of form 0.111111...2 are just below 1.0
= 1/2+1/4+1/8+..+1/2'+..— 1.0
= If we use notation 1.0 — g, then adding more bits brings € closer and
closerto 0

23

Recap: Fractional binary numbers

m What is decimal representation of 1011.101,?
23222120,2-12-22-3

B (23%1) 4+ (22%0) + (21%1) + (20%1) + (21%1) + (2:2*0) + (23 *1) = 11.625

Decimal to Binary Example
13.375

/\

13 0.375

0.011

"1 —___ /

1101.011

Practice on Your Own

m Convert the decimal number 27.3125 to its binary
representation

m Convert the binary number 1101.1001 to its decimal
representation

25

IEEE Floating Point

m IEEE Standard 754
= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= |EEE 754 is supported by all major CPUs

m Driven by numerical concerns (aforementioned limitations)
® Nice standards for rounding, overflow, underflow
® Problem: Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard

m Result: expressive but complex format for expressing fractional
numbers.

27

Fractional Binary Number Rep. is Limited

m Limitation #1
= Can only exactly represent fractional numbers of the form x/2"
= Other rational numbers have repeating bit representations
" Value Representation
- 1/3 0.0101010101[01]...
- 1/5 0.001100110011[0011]..2
« 1/10 ©0.0001100110011[0011]..2

m Limitation #2

= If we standardize representation, we would have one fixed location for
binary point within the w bits

= Limited range of numbers (very small values? very large?)

26

What to Take Away From 2 FP Lectures

m You should understand the spec.

" |n other words, you should be able to convert from a bitwise
representation to a numerical value, and from a numerical value to a
bitwise representation

m We will go over examples, but please complete the practice
problems

m It is a mechanical process, so practice will solidify the concepts

28

Floating Point Representation

Example:
15213, =(-1)°x 1.1101101101101, x 213

(_1)5 * M * 2E
= Sign bit s determines whether number is negative or positive

= Significand (mantissa) M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

® Numerical Form:

= Encoding
" MSB is sign bit s
= exp field encodes E (but is not equal to E)
*= frac field encodes M (but is not equal to M)

| s |exp frac

29

|
3 “Cases” in Floating Point Format

m Special values: infinity, negative infinity, and NaN
m So-called “normalized” form
m So-called “denormalized” form

—© . . +00
L1 -Normalized [-Denorm . | ;+Denorm +Normalized L]
L I / I \ I 1
NaN
NaN
— -0 +0 —

m We will go over each case individually, and revisit this number
line at the end

31

|
Precision options

m Single precision: 32 bits
~ 7 decimal digits, 10*38

| 3 |exp |frac

1 8-bits 23-bits

m Double precision: 64 bits
~ 16 decimal digits, 10398

| 3 |exp frac

1 11-bits 52-bits

m Other formats: half precision, quad precision

30

