
1

1

Memory and Floating Point (part I)

CSCI 237: Computer Organization
8th Lecture, Monday, Sept. 23

Kelly Shaw

1
2

Administrative Details
¢ Lab #2 checkpoint Tuesday at 11pm
§ What questions do you have?

¢ Read CSAPP 2.4-2.5

2

3

Last Time: Arithmetic Operations

¢ Integers (Ch 2.2-2.3)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, multiplication, shifting (Ch 2.3)

3
4

Today: Floating Point (part I)

¢ Integers (Ch 2.2-2.3)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, multiplication, shifting (Ch 2.3)

¢ Byte-oriented Memory Organization
§ Byte-ordering

¢ Background: Fractional binary numbers
¢ IEEE FP standard (normalized and denormalized values)
¢ Examples

4

2

5

Signed Power-of-2 Divide with Shift
¢ Operation
§ u >> k gives ë u / 2k û

§ Uses arithmetic shift
§ Rounds wrong direction when u < 0 (should round toward 0!)

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(u / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

We want::
 ë u / 2k û if u > 0, but
 é u / 2k ù if u < 0

5
6

--

Divide by Power of 2 (k = 2, divide by 4)

1100 00

Divide by
Shifting 2

1100 00
+ 0000 11

1100 11

1011 11

1011 11
+ 0000 11

1100 10

1011 10

1011 10
+ 0000 11

1100 01

1011 01

1011 01
+ 0000 11

1100 00

-17/4 = -4.25 -18/4 = -4.5 -19/4 = -4.75

111100 111011 111011 111011

Add bias

Divide by
Shifting 2 111100

-16/4 = -4

111100 111100 111100
-4 -4 -4 -4

6

7

Signed Power-of-2 Divide
¢ Operation behavior?
§ Want ë u / 2k û for positive quotients (Round Toward 0)
§ Want é u / 2k ù for negative quotients (Round Toward 0)
§ Compute as ë (u+2k-1)/ 2k û

§ In C: (u + (1<<k)-1) >> k
§ 2k-1 Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

7
8

Correct Signed Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

u

2k/
é u / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

8

3

9

Practice On Your Own

¢ What would be be printed?

char c = 128;
char d = 3;
char e = c * d;
printf(”e: %d \n”, e);

char s = 42;
char r1 = s / 8;
char r2 = s >> 3;
printf(“r1: %d r2: %d \n”, r1, r2);

9
10

Today: Floating Point (part I)

¢ Integers (Ch 2.2-2.3)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, multiplication, shifting (Ch 2.3)

¢ Byte-oriented Memory Organization
§ Byte-ordering

¢ Background: Fractional binary numbers
¢ IEEE FP standard (normalized and denormalized values)
¢ Examples

10

11

Byte-Oriented Memory Organization

¢ Programs refer to data by address
§ Conceptually, envision memory as a very large array of bytes

§ (In reality, it’s not, but we can think of it that way…)
§ An address is like an index into that array

§ Each variable is assigned an address
§ “Type” of a variable tells us how to interpret bytes at the variable’s

associated address

¢ Note: system provides private “address spaces” to each “process”
§ Think of a process as a program being executed
§ So, a program can clobber its own data, but not that of others

• • •
00
••
•0

FF
••
•F

11
12

Machine Words

¢ Any given computer has a “Word Size”
§ Word size is the size of an address (pointer)

¢ Until recently*, most machines used 32 bit words (4 bytes)
§ This limits addresses (memory size) to 4GiB (232 bytes)

¢ Now, most* machines have 64-bit word size
§ Potentially, could have 18 EB (exabytes) of addressable memory
§ That’s 18.4 X 1018

¢ Machines still support multiple data formats
§ Primitive types are always an integral number of bytes
§ Fractions (e.g., char, short) or multiples (e.g., long int) of word size

12

4

13

Word-Oriented Memory Organization

¢ Addresses Specify Byte Locations
§ Address “points to” first byte in word
§ Addresses of successive words always

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

Bytes Addr.

0012
0013
0014
0015

32-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

64-bit
Words

Addr
=
??

Addr
=
??

0000

0008

13
14

Aside: Byte Ordering

¢ So, how are the bytes within a multi-byte word ordered in
memory?

¢ Conventions
§ Big Endian: Sun, PPC Mac, Internet

§ Least significant byte has highest address
§ Little Endian: x86, ARM processors running Android, iOS, and Windows

§ Least significant byte has lowest address

14

15

Aside: Byte Ordering Example

¢ Example
§ Let variable x have 4-byte value of 0x01234567

§ The address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Big Endian: Least significant byte has highest address
Little Endian: Least significant byte has lowest address

15
16

Aside: Byte ordering Takeaway

¢ Endianness matters…
¢ But you really just need to be aware of it
¢ Consider endianness any time you store data for interpretation

by another program in the future

¢ Thankfully, most network and I/O libraries contain “serialization”
and “deserialization” functions that take care of translating
endianness for you

16

5

17

Today: Floating Point (part I)

¢ Integers (Ch 2.2-2.3)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, multiplication, shifting (Ch 2.3)

¢ Byte-oriented Memory Organization
§ Byte-ordering

¢ Background: Fractional binary numbers
¢ IEEE FP standard (normalized and denormalized values)
¢ Examples

17
18

How Can We Represent Numbers with
Fractional Components in Hardware?
¢ How do we express decimal numbers in binary?
¢ Examples:
§ 3.14
§ 2/3
§ 1.3*10-15

§ -7.2* 1020

18

19

Fractional binary numbers

¢ What is decimal representation of 1011.1012?

19
20

§ Digits to right of “decimal point” represent fractional powers of 10
§ Represents rational number:

10i

10i-1

100
10
1

1/10
1/100

1/1000

10-j

di di-1 ••• d2 d1 d0 d-1 d-2 d-3 ••• d-j

• • •

Fractional Decimal Numbers

• • •

!
𝒌"#𝒋

𝒊

𝒅𝒌×𝟏𝟎𝒌

20

6

21

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

§ Bits to right of “binary point” represent fractional powers of 2
§ Represents rational number:

• • •

21
22

Recap: Fractional binary numbers

¢ What is decimal representation of 1011.1012?

§ (23 *1) + (22 *0) + (21 *1) + (20 *1) + (2-1 *1) + (2-2 *0) + (2-3 *1) = 11.625

23222120.2-12-22-3

22

23

Fractional Binary Numbers: Examples

¢ Value Representation
 23/4 = 5 3/4 = 4 + 1 + !

"
 + !

#

 23/8 = 2 7/8 = 2 + !
"
 + !

#
 + !

$

 23/16 = 1 7/16 = 1 +
!
+

!
$ +

!
!%	

¢ Observations
§ Divide by 2 by shifting right (unsigned)
§ Multiply by 2 by shifting left
§ Numbers of form 0.111111…2 are just below 1.0

§ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
§ If we use notation 1.0 – ε, then adding more bits brings ε closer and

closer to 0

101.112

10.1112

1.01112

23
24

Decimal to Binary Example

13.375

13 0.375

13 – 23 = 5

5 – 22 = 1

1 – 20 = 0

1101

0.375 – 2-2 = 0.375-0.25=0.125

0.125 – 2-3 = 0.125-0.125=0

0.011

1101.011

24

7

25

Practice on Your Own

¢ Convert the decimal number 27.3125 to its binary
representation

¢ Convert the binary number 1101.1001 to its decimal
representation

25
26

Fractional Binary Number Rep. is Limited

¢ Limitation #1
§ Can only exactly represent fractional numbers of the form x/2k

§ Other rational numbers have repeating bit representations

§ Value Representation
§ 1/3 0.0101010101[01]…2
§ 1/5 0.001100110011[0011]…2
§ 1/10 0.0001100110011[0011]…2

¢ Limitation #2
§ If we standardize representation, we would have one fixed location for

binary point within the w bits
§ Limited range of numbers (very small values? very large?)

26

27

IEEE Floating Point
¢ IEEE Standard 754

§ Established in 1985 as uniform standard for floating point arithmetic
§ Before that, many idiosyncratic formats

§ IEEE 754 is supported by all major CPUs

¢ Driven by numerical concerns (aforementioned limitations)
§ Nice standards for rounding, overflow, underflow
§ Problem: Hard to make fast in hardware

§ Numerical analysts predominated over hardware designers in defining
standard

¢ Result: expressive but complex format for expressing fractional
numbers.

27
28

What to Take Away From 2 FP Lectures

¢ You should understand the spec.
§ In other words, you should be able to convert from a bitwise

representation to a numerical value, and from a numerical value to a
bitwise representation

¢ We will go over examples, but please complete the practice
problems

¢ It is a mechanical process, so practice will solidify the concepts

28

8

29

¢ Numerical Form:
 (–1)s * M * 2E

§ Sign bit s determines whether number is negative or positive
§ Significand (mantissa) M normally a fractional value in range [1.0,2.0).
§ Exponent E weights value by power of two

¢ Encoding
§ MSB is sign bit s
§ exp field encodes E (but is not equal to E)
§ frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

Example:
1521310 = (-1)0 x 1.11011011011012 x 213

29
30

Precision options

¢ Single precision: 32 bits
» 7 decimal digits, 10±38

¢ Double precision: 64 bits
» 16 decimal digits, 10±308

¢ Other formats: half precision, quad precision

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

30

31

3 “Cases” in Floating Point Format

¢ Special values: infinity, negative infinity, and NaN
¢ So-called “normalized” form
¢ So-called “denormalized” form

¢ We will go over each case individually, and revisit this number
line at the end

+¥−¥

-0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

31

