Bits, Bytes, and Integers (part V)

CSCl 237: Computer Organization
7th Lecture, Friday, Sept. 20

Kelly Shaw

|
Last Time: Bits, Bytes, and Integers

m C memory addressing
= Arrays
= References
® Pointers

Administrative Details

m Lab #2 checkpoint due Tuesday at 11pm
m Practice problems posted

m Weekly quiz due at 2:30pm today

m Read CSAPP 2.3,2.1.3-2.1.4,2.4-2.5

m CS Colloquium on Friday, 2:35pm in Wege
= Concurrent Communication Contracts

® Hannah Gommerstadt, Vassar College

" A concurrent system is a system where multiple processes collaborate on a
computation by exchanging messages. A communication contract represents a
property of the computation that should remain true throughout the computation.
Monitors can be used to check at runtime that a computation adheres to its contract.
My work uses session types to monitor concurrent contracts. This talk will introduce
session types, and present a variety of contracts that can be monitored.

|
Today: Memory Layout and C pointers

m Integers (Ch 2.2-2.3)

= Addition, multiplication, shifting (Ch 2.3)
m Byte-oriented Memory Organization

= Words

= Byte-ordering

Unsigned Addition

Operands: w bits u [ITTT e TTT1

+Vv [ITT eee TTT]
True Sum: w+1 bits u+v T — T
Discard Carry: wbits ~ UAddw(u ,v) [TT] (X [TT11

m Standard Addition Function

0 0 0000

" Ignores carry output ; é gg%

. . 3 [3 [0011

= Implements Modular Arithmetic 7210100
s = UAddu(u,v) = u+v mod2v 2 2 gi%

7 [7 [0111

unsigned char 1110 1001 E9 233 8 18 [1000
+ 1101 0101 + D5 + 213 A [10 | 1010

B |11 | I01T

1 1011 1110 1BE 446 C [12 [1100

D (13| 1101

1011 1110 BE 190 E [14 [1110

F |15 | 111T

Visualizing Unsigned Addition

m Wraps Around Overflow
= |f true sum 2 2w \

UAdd,(u, v)

= At most once

True Sum *
2w+1
Overflow

2 KI

Modular Sum

|
Visualizing (Mathematical) Integer Addition

= Integer Addition Adds(u, v)
" 4-bitintegers u, v Integer Addition

® Compute true sum
Add,(u, v)

" Values increase linearly
with uand v

® Forms planar surface

Two’s Complement Addition

Operands: w bits w LITT eee TTT]

+ vy [ITT eee TTT]
True Sum: w+1 bits u+v IOTTI — TT]
Discard Carry: w bits TAdd,(u,v) [T 1T eee TTT]

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;

s (int) ((unsigned) u + (unsigned) v);

t=u+v
= Willgive s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
0001 1011 1110 1BE 446
1011 1110 BE -66

TAdd Overflow

PosOver => truncation subtracts 2% from sum
NegOver => truncation adds 2% to sum

= Functionality True Sum
® True sum requires w+1 bits w_1] T+
PosOver
= Drop off MSB TAdd Result
= Treat remaining bits as 2’s PR 011..1
comp. integer
0 -+ 000..0
2wt + 100..0
ow 1 NegOver

Another Visualization of TAdd

Positive Overflow
= Functionality TAdd(u,v) |
= True sum requires w+1 bits >0 !
= Drop off MSB v
" Treat remaining bits as 2’s <0
comp. integer l
/<0u>0
Negative Overflow

ju+v + 2w u+v <TMin,, (NegOver)
TAdd,, (u,v) = u+v TMin,, <u+v<TMax,,

u+v— 2w TMax,, <u+Vv (PosOver)

11

Visualizing 2’s Complement Addition

NegOver

= Values \
" 4-bit two’s comp.

TAdd4(u, v)
= Range from -8 to +7
= Wraps Around
= |f sum > 2wt
= Becomes negative
= Wraps at most once
" If sum < —2w-1
= Becomes positive
= Wraps at most once

u 6 PosOver

10

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
® Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—1)2 = 22w—-2w1 4]
= Two’s complement min (negative): Up to 2w-2 bits
= Result range: x ¥ y > (—2w-1)*(2w-1-1) = —22w-24 w-1
" Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x ¥ y < (—2w-1) 2 = 22w-2
= So, maintaining exact results...
= would need to keep expanding word size with each product computed
" is done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

12

Binary Multiplication

m Same “algorithm” as decimal multiplication
Example: 5*%5 = 25

101

13

Signed Multiplication in C

uw LI (XD [T 11

Operands: w bits
* y [ILI1 ee [T 11
True Product: 2*w bits U VLI TT eee TTTTJTTT eee TTT]
TMult,(u ,v) [TTT +e¢ TT1T1]

Discard w bits: w bits

m Standard Multiplication Function
= Ignores high order w bits
= Some of which are different for signed vs. unsigned multiplication
= Lower bits are the same (as unsigned multiplication)

1110 1001 E9 -23
* 1101 0101 * D5 ~* -43
0000 0011 1101 1101 03DD 989
1101 1101 DD -35

15

Unsigned Multiplication in C
u LTI eee [TT11
Operands: w bits
* oy [ITTT e [TT11
True Product: 2*w bits U V[T T[] eee TTTTTTT eee TTT]
UMult,,(u , v e
Discard w bits: w bits wl) [T L11]
m Standard Multiplication Function
" Ignores high order w bits
= Implements Modular Arithmetic
UMult,(u,v) = u v mod2v
1110 1001 E9 233
* 1101 0101 * D5 * 213
1100 0001 1101 1101 C1DD 49629
1101 1101 DD 221 N

14

Power-of-2 Multiply with Shift

m Operation
"u << kgivesu * 2k
= Both signed and unsigned k
u LILIT eee TTT]
Operands: w bits
* ok eee eee

True Product: wtk bits U 2X[TTT eee TTTTol <es Toldl
Discard k bits: w bits UMult,(u .2 [eee T T T JoI eee Jolo]

TMult,,(u , 2)

= Most machines shift and add faster than multiply
= Rewrite expressions to use shifts instead of multiply
= Compiler generates this code automatically

16

Unsigned Power-of-2 Divide with Shift

m Operation
=u > kgies Lu / 2¢]
= Uses logical shift

k
u [T TeeeT[TeeTT1] BinaryPoint

Operands:

P | 2t [=== JoMlol <= Jolo]

7
Division: u/2F [0 eee JOTOT T T eee T T eee T 1]
Result: | w/2k] [To[oI TTeeeT1]
Division | Computed Hex Binary

x 15213 15213| 3B 6D| 00111011 01101101

x >> 1 7606.5 7606| 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 | 59.4257813 59| 00 3B| 00000000 00111011

Signed Power-of-2 Divide

m Operation behavior?
= Want Lu / 2¢] for positive quotients (Round Toward 0)
= Want [u / 2] for negative quotients (Round Toward 0)
= Compute as L (u+2k-1) / 2« |
= InC: (u + (1<<k)-1) >> k
= 2k-1 Biases dividend toward 0

Signed Power-of-2 Divide with Shift

m Operation
" u >> kgives Lu 7/ 2¢]
= Uses arithmetic shift
® Rounds wrong direction whenu < 0 (sh]c;uld round toward 0!)

u [T T ee JTT e TT] Binary Point

Operands: v

| 2% [o eee ToJaTol eee To]0]

VA
Division: u/2k [l eee TTTTT e THT T eee TT71]
Result: ~ RoundDown(u / 2%) [T TT T T v 1]
Division | Computed Hex Binary

y -15213 -15213] c4 93] 11000100 10010011
y >> 1 :7606.5 E2 49[11100010 01001001
y >> 4 W R FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60] FF c4| 11111111 11000100

18

Bias Intuition (k=2, 2k-1 = 3)

16 17 18 19
0100 00 010001 0100 10 0100 11

2k1=3 0000 11

0100 00 010001 0100 10 0100 11
+ 000011 + 000011 + 000011 + 000011
0100 11 0101 00 010101 010110

Bit k=2 only gets increased if bit positions k < 2 had at least one 1.

20

Divide by Power of 2 (k = 2, divide by 4)

16/4=-4 17/4=-4.25 -18/4=-45 -19/4=-4.75

1100 00 1011 11 1011 10 101101
Divide by 111100 @ 111011 © 111011 © 111011 @
Shifting 2

1100 00 1011 11 1011 10 101101
Add bias + 000011 + 0000 11 + 000011 + 000011

1100 11 1100 10 1100 01 1100 00
Divide by 11100 @ 111100 @ 111100 @ 111100 @
Shifting 2 4

- 4 -4 4

2

21

