
1

1

Bits, Bytes, and Integers (part IV)

CSCI 237: Computer Organization
6th Lecture, Wednesday, Sept. 18

Kelly Shaw

1
2

Administrative Details
¢ Lab #2 assigned today
§ Start on it in lab. Yay!

¢ Snack and Gab (4:10-4:30pm today in CS Commons)
¢ Practice problems posted
¢ Read CSAPP 2.3, 2.1.3-2.1.4
¢ Read K&R Ch. 4-5 (as reference)
¢ CS Colloquium on Friday, 2:35pm in Wege
§ Concurrent Communication Contracts
§ Hannah Gommerstadt, Vassar College
§ A concurrent system is a system where multiple processes collaborate on a

computation by exchanging messages. A communication contract represents a
property of the computation that should remain true throughout the computation.
Monitors can be used to check at runtime that a computation adheres to its contract.
My work uses session types to monitor concurrent contracts. This talk will introduce
session types, and present a variety of contracts that can be monitored.

2

3

Last Time: Bits, Bytes, and Integers

¢ Integers (Ch 2.2)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting (Ch 2.3)

3
4

Today: Bits, Bytes, and Integers

¢ C memory addressing
§ Arrays
§ References
§ Pointers

¢ Integers (Ch 2.2-2.3)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting (Ch 2.3)

4

2

5

Practice On Your Own

¢ What would be be printed?

char c = 0xe7;
short s = (short) c;
printf(”c: %d s: %d \n”, c, s);

s = 0xff07;
c = (char)s;
printf(“c: %d s: %d \n”, c, s);

5
6

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10

pointer 4 8 8

6

7

Pointers

¢ Pointers store a memory address
¢ A static variable’s memory address can be obtained with &

§ int val = 3;

§ int *ptr = &val;

¢ The pointer variable stores a value that is the address
§ ptr == NULL

¢ To access the value pointed to, need to use the * operator
§ int num = *ptr;

§ *ptr = 7;

¢ Modifying the pointer variable without the * operator changes
what is pointed to
§ ptr = #

§ *ptr = 10;

// Same as int *ptr; ptr = &val;

7
8

01000

int val = 4;

int *ptr = NULL;

ptr = &val;

4

addr = 1000

addr = 1004

*ptr = 7;

7

8

3

9

Practice
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int x = 3, y = 10;
 int *ptr = NULL;

 ptr = &y;
 *ptr = 7;
 y++;
 printf(“x %d y %d ptr %d\n”, x, y, *ptr);

 ptr = &x;
 *ptr = *ptr + 1;
 printf(“x %d y %d ptr %d\n”, x, y, *ptr);

 ptr = NULL;
 // Why doesn’t the next line of code work?
 printf(“x %d y %d ptr %d\n”, x, y, *ptr);
 return 0;
}

x 3 y 8 ptr 8

x 4 y 8 ptr 4

ptr == NULL

9
10

structs

¢ Statically declared structs created just like primitive variables
§ struct set set1;

¢ To access data fields, use . Operator
§ set1.num_elements = 3;

¢ Pointers can store the address of structs
§ struct set *ptr = &set1;

¢ To use pointer to access fields in the struct, use either
combination of * and . operators or -> operator
§ (*ptr).num_elements = 10;

§ ptr->num_elements = 7;

10

11

#include <stdio.h>

struct set { // declaration of struct set
 int elements[5];
 int num_elements;

};

int main(int argc, char *argv[])
{
 struct set setA; // instance of struct set

 setA.num_elements = 3; // initialize instance fields
 setA.elements[0] = 1;
 setA.elements[1] = 2;
 setA.elements[2] = 3;

 for(int i = 0; i < setA.num_elements; i++){
 printf("%d\n", setA.elements[i]);
 }

 struct set *ptr; // create alias through pointer
 ptr = &setA;
 printf(“%d\n”, ptr->num_elements);

 return 0;
}

11
12

Representing Arrays In Memory

¢ Each array element the size of the
specified type

¢ Array elements laid out in memory in
contiguous memory locations

¢ Array name also refers to the address
of the first element in the array
§ arr == &arr[0]

¢ Any operation done with an array can
be done with pointers (pointer
arithmetic)
§ int *ptr = arr;

§ ptr == &arr[0]

§ (ptr+1) == &arr[1]

int arr[6];

arr

31

38

32

31

33

00

arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

arr[5]

12

4

13

int main(int argc, char *argv[])
{
 int arr[4];

 arr[0] = 0;
 arr[1] = 1;
 arr[2] = 2;
 arr[3] = 3;

 int *ptr = arr;
 // Above equivalent to
 // int *ptr;
 // ptr = arr;

 printf("Addresses: \n");
 printf("\t arr \t %llx \n", (unsigned long long)arr);
 printf("\t &arr[0] \t %llx \n", (unsigned long long)(&arr[0]));
 printf("\t ptr \t %llx \n", (unsigned long long) ptr);
 printf("\t &ptr \t %llx \n", (unsigned long long)&ptr);

 return 0;
}

Addresses:
arr 7ffee62258a0
&arr[0] 7ffee62258a0
ptr 7ffee62258a0
&ptr 7ffee6225888

13
14

Why use pointers?
(for statically declared variables)
¢ Modular programming
§ Allows you to pass the memory address of a local variable to another

function
§ Allows other function to read and update variable so that modifications

are reflected in function where variable created
§ Avoids need to create a copy of the variable contents (so less memory is

used)

¢ Enables single name for collection of elements/memory
addresses (i.e., array)
§ Only need one pointer/array name to access all of the elements of an array

14

15

char S[6] = "18213";

Representing Strings

¢ Strings in C
§ Represented by array of characters
§ Each character encoded in ASCII format

§ Standard 7-bit encoding of character set
§ Character “0” has code 0x30

– Digit i has code 0x30+i
§ String should be null-terminated

§ Final character = 0

¢ char *s vs. char s[]

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00

15
16

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char arr[10];
 char *ptr = NULL;
 strcpy(arr, "Donuts!");

 printf("arr %s\n", arr);
 ptr = arr;
 printf("ptr %s\n", ptr);

 arr[2] = 'N';
 ptr[3] = 'U';
 printf("\nAfter uppercase\n");
 printf("arr %s\n", arr);
 printf("ptr %s\n", ptr);

 *(ptr+2) = '\0';
 printf("\nAfter null terminator\n");
 printf("arr %s\n", arr);
 printf("ptr %s\n", ptr);

}

arr Donuts!
ptr Donuts!

After uppercase
arr DoNUts!
ptr DoNUts!

After null terminator
arr Do
ptr Do

16

