
1

1

Bits, Bytes, and Integers

CSCI 237: Computer Organization
5th Lecture, Monday, Sept. 16

Kelly Shaw

1
2

Administrative Details
¢ Lab #1 due Tuesday at 11pm
§ Any questions?
§ Lab video on Glow – using gdb for bit puzzles

¢ Read CSAPP 2.2
¢ In lecture practice problems for last week posted on Glow
¢ WICS Info Session
§ Today at 5:30pm in CS Common Area
§ Snacks included

¢ SnackAndGab
§ Wednesday 4:10-4:30 CS Common Room

2

3

Last Time: Bits, Bytes, and Integers

¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations
§ Any questions from 15 minute video on Glow?

3
4

Today: Bits, Bytes, and Integers

¢ Integers (Ch 2.2)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting (Ch 2.3)

4

2

5

Encoding Integers

¢ Sign Bit
§ For 2’s complement, most significant bit indicates sign

§ 0 for nonnegative
§ 1 for negative

¢ Example:

(Recall that In C, a short is 2 bytes long)

short int x = 15213;
 short int y = -15213;

B2U(X) = xi ×2
i

i=0

w-1

å
Unsigned

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

å
Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Binary To Unsigned Binary To Two’s Complement

5
6

Two’s-complement Example with 5 bit numbers

10 =

-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

How to represent the smallest signed value using 5 bits?
How to represent the largest signed value using 5 bits?

0

? ? ? ? ?

? ? ? ? ?

Can you generalize to w bits?

6

7

Two’s-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101

 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

2i

2-i

7
8

Nice Feature: Flip all the Bits and Add 1

10: 01010

Flip bits: 10101

Add 1: 10110 -16+4+2 = -10

Flip bits: 01001

Add 1: 01010 8+2 = 10

8

3

9

Numeric Ranges & Important Values
¢ Unsigned Values
§ UMin = 0

000…0

§ UMax = 2w – 1
111…1

¢ Two’s Complement Values
§ TMin = –2w–1

100…0

§ TMax = 2w–1 – 1
011…1

¢ Negative 1?

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

9
10

Decimal Values for Different Word Sizes

¢ Observations
§ |TMin | = TMax + 1

§ Asymmetric range
§ One extra negative number

§ UMax = (2 * TMax) + 1

	 W	(in	bits)	
	 8	 16	 32	 64	

UMax	 255	 65,535	 4,294,967,295	 18,446,744,073,709,551,615	
TMax	 127	 32,767	 2,147,483,647	 9,223,372,036,854,775,807	
TMin	 -128	 -32,768	 -2,147,483,648	 -9,223,372,036,854,775,808	

	
	

¢ C Programming
§ #include <limits.h>
§ Declares constants, e.g.,

§ ULONG_MAX
§ LONG_MAX
§ LONG_MIN

§ Values are platform specific

10

11

Unsigned & Signed Numeric Values

¢ Equivalence
§ Same encodings for nonnegative

values

¢ Uniqueness
§ Every bit pattern represents unique

integer value
§ Each representable integer has

unique bit encoding

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

11
12

Today: Bits, Bytes, and Integers

¢ Integers (Ch 2.2)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting (Ch 2.3)

12

4

13

T2UTwo’s Complement Unsigned

Maintain Same Bit Pattern

x uxT2B B2UX

Mapping Between Signed & Unsigned

¢ Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret

U2T Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux xU2B B2TX

13
14

Mapping Signed « Unsigned
signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

BITS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

14

15

Signed « Unsigned: Same bits, different interp.
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Why
16?

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

15
16

+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x uxX

16

5

17

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
¢ 2’s Comp. ® Unsigned
§ Ordering Inversion
§ Negative ® Big Positive

17
18

C Signed vs. Unsigned: A series of surprises?
¢ Constants
§ By default are considered to be signed integers
§ Literals unsigned if have “U” as suffix (kind of like 0x for hex)

0U, 4294967259U

¢ Casting
§ Explicit casting between signed & unsigned same as “U2T” and “T2U”

§ The bits don’t change, but the interpretation does
int tx, ty;

unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

§ Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

18

19

0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
¢ Expression Evaluation

§ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

§ Including comparison operations <, >, ==, <=, >=
§ Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0

 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

19
20

Summary
Casting Signed ↔ Unsigned: Basic Rules
¢ Bit pattern is maintained
¢ But reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned int
§ int is cast to unsigned!!

20

6

21

Practice on Your Own
¢ Between signed and unsigned

 unsigned ux;
 int x = -10;

 ux = x;
 printf("x %x ux %x\n", x, ux);
 printf("x %d ux %u\n", x, ux);

¢ Between different types (of different sizes)
 short sx = 0, sy = 0xfedc;

 int x = 0x80004000;
 sx = x;
 x = sy;
 printf("sx: %x x: %x\n", sx, x);

 printf("sx: %d x: %d\n", sx, x);

21
22

Revisiting Right Shift Operations

¢ Right Shift: x >> y
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate MSB on left

01100010Argument x

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00101000Log. >> 2

11101000Arith. >> 2

0001100000011000

0001100000011000

00101000

11101000

00101000

11101000

9810

2410

2410

-9410

4010

-2410

Arithmetic right shift maintains negativity

22

23

Today: Bits, Bytes, and Integers

¢ Integers (Ch 2.2)
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting (Ch 2.3)

23
24

Sign Extension
¢ Task:
§ Given w-bit signed integer x
§ Convert it to w+k-bit integer with same value

¢ Rule:
§ Make k copies of sign bit:
§ X = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •
• • •

w

wk

24

7

25

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

25
26

Larger Sign Extension Example

¢ When converting from smaller to larger integer data type, C
automatically performs sign extension

short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

26

27

Truncation
¢ Task:
§ Given k+w-bit signed or unsigned integer X
§ Convert it to w-bit integer X’ with same value for “small enough” X

¢ Rule:
§ Drop top k bits:
§ X = xw–1 , xw–2 ,…, x0

• • •

• • •X ¢
w

X • • • • • •
wk

27
28

Truncation Example: 5 bits -> 4 bits

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

Sign changeNo sign change

28

8

29

Summary:
Expanding, Truncating: Basic Rules

¢ Expanding (e.g., short int to int)
§ Unsigned: zeros added
§ Signed: sign extension
§ Both yield expected result: value is preserved w.r.t. signedness

¢ Truncating (e.g., unsigned to unsigned short)
§ Unsigned/signed: bits are truncated, result reinterpreted
§ For small numbers yields expected behavior

§ Value is preserved
§ For numbers that are too large to fit into smaller number of bits

§ Value is changed

29

