“With deliberate practice, however, the goal is not just to reach your potential
but to build it, to make things possible that were not possible before. This
requires challenging homeostasis - getting out of your comfort zone - and
forcing your brain or your body to adapt. But once you do this, learning is no
longer just a way of fulfilling some genetic destiny; it becomes a way of taking
control of your destiny and shaping your potential in ways that you choose.”

-- Peak: Secrets from the New Science of Expertise by Ericsson and Pool

Bits, Bytes, and Integers

CSCI 237: Computer Organization
4th Lecture, Friday, September 13

Administrative Details

m Lab #1 due Tuesday at 11pm
" Any questions?
" Lab video on Glow — using gdb for bit puzzles
m Read CSAPP 2.2
m Weekly quiz on Glow due today at 2:30pm
m CS Colloquium today in Wege at 2:35pm
m Watch 15 minute recorded lecture before Monday

Kelly Shaw
Slides uniina\lz desiﬁned bx Bgam and O'Hallaron @ CMU for use with Cumgu(er st(ems: A PrDErammer’s PersEecﬂve, Third Edition 2

2

Last Class

m C syntax and examples
= Control structures

= Terminology
[]

9/14/24

|
Today’s Class

m Representing information as bits
m Number representation

= Conversion between decimal and binary
= Conversion between hexadecimal, decimal, and binary

m Relationship between digits and range of unique values

m Bit-level manipulations

We can represent (many) numbers in binary

m Base 2 Number Representation
" Represent 15213,,as 11101101101101,
= Represent 1.20,4 as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213

= Representing really large numbers, really small numbers, or
really precise numbers can take many binary digits

" The largest number we can represent will be finite because of physical
hardware constraints

|
Everything is bits!

m Each bitisOor1
m By encoding/interpreting sets of bits in various ways
= Computers determine what to do (instructions)
= ...and represent and manipulate numbers, sets, strings, etc...
m Why bits? Convenient for Electronic Implementation
" Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

0 ‘ 1 0—

1.1V —
0.9V —

0.2V —
0.0V —

|
Numbers are numbers but we can display

them in different bases

m Decimal 10 01..,8,9
m Binary 2 0,1
= Octal 8 012..,6,7

m Hexadecimal 16 012..,8,9A,B,..EF

9/14/24

Converting from Binary to Decimal

m Decimal
n-1
Z d;x10i where d; € {0,1,2,3, ..., 8,9}
i=0
eg)123 = 1x10% 4+ 2x10! 4+ 3x10°

m Binary
n-1
Z b;x2i where b; € {0,1}
i=0
e.g.)110 = 1x22 + 1x21 + 0x2° = 6 in decimal

Example: Converting Decimal to Binary

| 1110
= Largest power of 2 that fits into 11is 8
" Ig 8 is 3 so bit 3 will be setto 1
= 11-8=3
= Largest power of 2 that fits into 3 is 2
" |g 2is 150 bit 1 will be setto 1
"3-2=1
= Largest power of 2 that fits into 1is 1
" Lg1is 0so bit 0 will be setto 1
"=1-1=0
" Final result: 1011,

11

Converting Decimal to Binary

m Iterative process while remaining number =0
® Find largest power of 2 that fits into number and call it x.
= Set to 1 the binary digit at position Ig x
® Subtract x from number

10

|
Converting Decimal to Binary (2" algorithm)

m Iterative process while remaining number !=0
" bit = number % 2
" Prepend bit to result string
® number = number / 2

12

9/14/24

|
Example: Converting Decimal to Binary (2

algorithm)

| 1110
"bit =11 $ 2 =1
result =1
number = 11 / 2 =5
"bit =5% 2 =1
result = 11
number =5 / 2 = 2
"bit =2 % 2 =0
1

result = 0

number = 2 % 2 =1
"hbit=1% 2 =1
result = 1011
number = 1 / 2 =0

13

Hexadecimal

m Convert decimal to hexadecimal using 2 algorithms for decimal
to binary but switch to base 16 instead of base 2.

15

Hexadecimal

m Digits
=01,23,45,6,78,9AB,CD,EF

m Converting hexadecimal to decimal
n-1
Z h;x16! where b; € {0,1, ..., 9,4, B, C, D, E, F}
i=0

e.g.)1B4 = 1x162% + 11x16' + 4x16° = 256 + 176 + 4 =
436 in decimal

14

Today: Bits, Bytes, and Integers

m Relationship between digits and range of unique values
m Bit-level manipulations

16

9/14/24

Bytes: the smallest unit of memory transfer
N
i N
ml Byte = 8 bits \?\®+ 09‘0?5‘&
= Binary: 000000002 to 111111112 00 0000
n i . 1|1 [0001
Decimal: 010 to 25510 > T0010
= Hexadecimal 0016 to FF1e 3 [3 [0011
. 4 |4 [0100
= Hex: Base 16 number representation 55 0101
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 6 16 [0110
7 17 [0111
= Write FA1D37Bi6 in C as 8 | 8 [1000
_ 9 | 9 | 1001
O0xFA1D37B 2 11011010
— Oxfald37b B [11 1011
C [12] 1100
D [13] 1101
E [14 1110
F [15] 1111
17

17

Practice On Your Own (Solns on Glow)

m Convert the following decimal number to binary
=27

m Convert the following binary number to decimal
= 11001011

m Convert the following binary number to hexadecimal
= 1011101

m Convert the following decimal number to hexadecimal
" 93

19

Bytes: the smallest unit of memory transfer
»
. . . \6‘?’ &
m Converting binary <-> hex: Q@"' OQ,G o
" One hex character represents 4 bits 0 170 10000
. Snlit i N] 11 0001
Split into groups of 4 binary bits > 1210010
= “pad” leftmost digit with Os 3 [3]0011
4 | 4 0100
515]0101
6 [6 [0110
m Examples: 7 [7 [0111
.) - 8 [8 | 1000
11001, in hex? 59 11001
= 0xfaO1 in binary? A |10[1010
B (111011
C [12] 1100
D (131101
E (141110
F |15] 1111
18

18

|
Relationship between Digits and Unique

Values

® What is the total number of unique values we can represent
with w digits
" in decimal?
" in binary?
m Definition of log,x?
" log,x?
" logiox?

20

20

9/14/24

C Primitive types are multiples of bytes

C Data Type Typical 32-bit | Typical 64-bit x86-64

(number of bytes)

*word size : size of pointer data which is number of bits to specify an address

21

Practice on Your Own

= Why do you think there are so many different ways of
representing whole numbers (i.e., char, short, int, long) in C?

23

Number of Unique values

m 1 byte char
= 278 =256
m 2 byte short
= 2716 = 65536
® 4 byte int
= 2732 =4,294,967,296
= 8 byte long
= 2764 = 18446744073709551616

22

|
Today: Bits, Bytes, and Integers

m Number representation
® Conversion between decimal and binary

® Conversion between hexadecimal, decimal, and binary
m Relationship between digits and range of unique values

m Bit-level manipulations

24

9/14/24

Boolean Algebra (Ch 2.1.6)

m Developed by George Boole in 19th Century
= Algebraic representation of logic

= Encode “True” as 1 and “False” as 0
And Or

= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1

&[0 1 I {0 1
0|0 O 0|0 1
1]0 1 101 1

Not Exclusive-Or (Xor)
= ~A=1when A=0 = A7B = 1 when either A=1 or B=1, but not both
~ Ao 1
o1 0|0 1
110 11 0

25

Bit-Level Operations in C (Lab 1!)

m Operations &, |, ~, ~ available in C
= Apply to any “integral” data type
= long, int, short, char, unsigned
" View arguments as sequence of bits
= Arguments applied bit-wise

m Examples (char data type)
= ~Qx41 — OXBE
= ~010000012 — 101111102
= ~0x00 — OxFF
= ~000000002 — 111111112
= 0x69 & 0x55 — 0x41
= 011010012 & 010101012 — 010000012
= Ox69 | @x55 — Ox7D
= 011010012 | 010101012 — 011111012

28

General Boolean Algebras

m Operate on sequence of bits
= Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the properties of Boolean Algebra apply, but on a per-bit
basis

26

26

Contrast: Logic Operations in C

m Contrast to Logical Operators
=&, II, !
= View 0 as “False”
= Anything nonzero as “True”
= Operators always return 0 or 1
= Early termination (short circuit)
m Examples (char data type)
= 19x41 - 0x00

= 10x00 - 0x01
= 119x41 - 0x01

= 0x69 &% @Ox55 — 0x01
= 0x69 || @x55 — 0x01

29

29

9/14/24

Contrast: Logic Operationsin C

m Contrast to Logical Operators

m Examples
= 10x41
= 10x00
= 110x41

" 0x69 && Ox55 — 0x01
= 0x69 || @x55 — 0x01

30

Practice On Your Own

m Assume numbers are represented as 8 bits:
m 0xa7 | Oxc2
m 0xa7 || Oxc2

m Oxa7 & 0xc2
m Oxa7 && 0xc2

m ~0xa7

m |0xa7

m 0xa7 >> 3 (logical right shift)

m 0xa7 >> 3 (arithmetic right shift)

32

|
Shift Operations

m Left Shift: x << y Argument x [01100010

= Shift bit-vector x left by y positions << 3 00010000

— Throw away extra bits on left Log.>> 2 | 00011000

= Fill with 0’s on right

® Right Shift: x >> vy
= Shift bit-vector x right by y positions

Arith. >> 2 | 00011000

= Throw away extra bits on right Argument x | 10100010

= Logical shift << 3 00010000

= Fill with 0’s on left Log.>> 2 | 00101000
= Arithmetic shift
= Replicate most significant bit on left

Arith. >> 2 | 11101000

= Undefined Behavior
= |f shift amount is less than O or larger than word size
= Can’t shift left more than or equal to number of bits in type

3

31

In-class Problem

m Using only operators: ~, |, &, |, <<, >>, +, -
m int moduloPowerOfTwo(int num, int powerOfTwo)

= powerOfTwo is an int specifying which power of 2. It cannot be larger than
31.

33

33

9/14/24

