
9/14/24

1

1Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

“With deliberate practice, however, the goal is not just to reach your potential
but to build it, to make things possible that were not possible before. This
requires challenging homeostasis - getting out of your comfort zone - and
forcing your brain or your body to adapt. But once you do this, learning is no
longer just a way of fulfilling some genetic destiny; it becomes a way of taking
control of your destiny and shaping your potential in ways that you choose.”

-- Peak: Secrets from the New Science of Expertise by Ericsson and Pool

1
2Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

CSCI 237: Computer Organization
4th Lecture, Friday, September 13

Kelly Shaw

2

3

Administrative Details

¢ Lab #1 due Tuesday at 11pm
§ Any questions?
§ Lab video on Glow – using gdb for bit puzzles

¢ Read CSAPP 2.2
¢ Weekly quiz on Glow due today at 2:30pm
¢ CS Colloquium today in Wege at 2:35pm
¢ Watch 15 minute recorded lecture before Monday

3
4

Last Class

¢ C syntax and examples
§ Control structures

¢ Terminology
¢ Representing information as bits
¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations

4

9/14/24

2

5

Today’s Class

¢ Representing information as bits
¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations

5
6

Everything is bits!

¢ Each bit is 0 or 1
¢ By encoding/interpreting sets of bits in various ways
§ Computers determine what to do (instructions)
§ … and represent and manipulate numbers, sets, strings, etc…

¢ Why bits? Convenient for Electronic Implementation
§ Easy to store with bistable elements
§ Reliably transmitted on noisy and inaccurate wires

0.0V
0.2V

0.9V
1.1V

0 1 0

6

7

We can represent (many) numbers in binary

¢ Base 2 Number Representation
§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104 as 1.11011011011012 X 213

¢ Representing really large numbers, really small numbers, or
really precise numbers can take many binary digits
§ The largest number we can represent will be finite because of physical

hardware constraints

7
8

Numbers are numbers but we can display
them in different bases
¢ Decimal 10 0, 1, …, 8, 9
¢ Binary 2 0, 1
¢ Octal 8 0, 1, 2, …, 6, 7
¢ Hexadecimal 16 0, 1, 2, …, 8, 9, A, B, …, E, F

8

9/14/24

3

9

¢ Decimal

e.g.)123 = 1×10! + 2×10" + 3×10#

¢ Binary

e.g.)110 = 1×2! + 1×2" + 0×2# = 6 in decimal

Converting from Binary to Decimal

!
𝒊"𝟎

𝒏%𝟏

𝒃𝒊×𝟐𝒊	𝒘𝒉𝒆𝒓𝒆	𝒃𝒊 ∈ {𝟎, 𝟏}

!
𝒊"𝟎

𝒏%𝟏

𝒅𝒊×𝟏𝟎𝒊	𝒘𝒉𝒆𝒓𝒆	𝒅𝒊 ∈ {𝟎, 𝟏, 𝟐, 𝟑, … , 𝟖, 𝟗}

9
10

Converting Decimal to Binary

¢ Iterative process while remaining number != 0
§ Find largest power of 2 that fits into number and call it x.
§ Set to 1 the binary digit at position lg x
§ Subtract x from number

10

11

Example: Converting Decimal to Binary

¢ 1110

§ Largest power of 2 that fits into 11 is 8
§ lg 8 is 3 so bit 3 will be set to 1
§ 11 – 8 = 3
§ Largest power of 2 that fits into 3 is 2
§ lg 2 is 1 so bit 1 will be set to 1
§ 3 – 2 = 1
§ Largest power of 2 that fits into 1 is 1
§ Lg 1 is 0 so bit 0 will be set to 1
§ 1 – 1 = 0
§ Final result: 10112

11
12

Converting Decimal to Binary (2nd algorithm)

¢ Iterative process while remaining number != 0
§ bit = number % 2

§ Prepend bit to result string
§ number = number / 2

12

9/14/24

4

13

Example: Converting Decimal to Binary (2nd
algorithm)
¢ 1110

§ bit = 11 % 2 = 1
§ result = 1
§ number = 11 / 2 = 5

§ bit = 5 % 2 = 1
§ result = 11
§ number = 5 / 2 = 2
§ bit = 2 % 2 = 0

§ result = 011
§ number = 2 % 2 = 1
§ bit = 1 % 2 = 1
§ result = 1011

§ number = 1 / 2 = 0

13
14

¢ Digits
§ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

¢ Converting hexadecimal to decimal

e.g.)1𝐵4 = 1×16! + 11×16" + 4×16# = 256 + 176 + 4 =
	436	𝑖𝑛	𝑑𝑒𝑐𝑖𝑚𝑎𝑙	

Hexadecimal

!
𝒊"𝟎

𝒏%𝟏

𝒉𝒊×𝟏𝟔𝒊	𝒘𝒉𝒆𝒓𝒆	𝒃𝒊 ∈ {𝟎, 𝟏, … , 𝟗, 𝑨, 𝑩, 𝑪, 𝑫, 𝑬, 𝑭}

14

15

Hexadecimal

¢ Convert decimal to hexadecimal using 2 algorithms for decimal
to binary but switch to base 16 instead of base 2.

15
16

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations

16

9/14/24

5

17

Bytes: the smallest unit of memory transfer

¢ 1 Byte = 8 bits
§ Binary: 000000002 to 111111112

§ Decimal: 010 to 25510

§ Hexadecimal 0016 to FF16
§ Hex: Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

17
18

Bytes: the smallest unit of memory transfer

¢ Converting binary <-> hex:
§ One hex character represents 4 bits

§ Split into groups of 4 binary bits
§ “pad” leftmost digit with 0s

¢ Examples:
§ 110012 in hex?
§ 0xfa01 in binary?

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

18

19

Practice On Your Own (Solns on Glow)

¢ Convert the following decimal number to binary
§ 27

¢ Convert the following binary number to decimal
§ 11001011

¢ Convert the following binary number to hexadecimal
§ 1011101

¢ Convert the following decimal number to hexadecimal
§ 93

19
20

Relationship between Digits and Unique
Values
¢ What is the total number of unique values we can represent

with w digits
§ in decimal?
§ in binary?

¢ Definition of lognx?
§ log2x?
§ log10x?

20

9/14/24

6

21

C Primitive types are multiples of bytes

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10

pointer 4 8 8

(number of bytes)

*word size : size of pointer data which is number of bits to specify an address

21
22

Number of Unique values

¢ 1 byte char
§ 2^8 = 256

¢ 2 byte short
§ 2^16 = 65536

¢ 4 byte int
§ 2^32 = 4,294,967,296

¢ 8 byte long
§ 2^64 = 18446744073709551616

22

23

Practice on Your Own

¢ Why do you think there are so many different ways of
representing whole numbers (i.e., char, short, int, long) in C?

23
24

Today: Bits, Bytes, and Integers

¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations

24

9/14/24

7

25

Boolean Algebra (Ch 2.1.6)

¢ Developed by George Boole in 19th Century
§ Algebraic representation of logic

§ Encode “True” as 1 and “False” as 0
And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

25
26

General Boolean Algebras

¢ Operate on sequence of bits
§ Operations applied bitwise

¢ All of the properties of Boolean Algebra apply, but on a per-bit
basis

01101001
& 01010101
 01000001

01101001
| 01010101
 01111101

01101001
^ 01010101
 00111100

~ 01010101
 1010101001000001 01111101 00111100 10101010

26

28

Bit-Level Operations in C (Lab 1!)

¢ Operations &, |, ~, ^ available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as sequence of bits
§ Arguments applied bit-wise

¢ Examples (char data type)
§ ~0x41 ➙

§ ~010000012 ➙
§ ~0x00 ➙

§ ~000000002 ➙
§ 0x69 & 0x55 ➙

§ 011010012 & 010101012 ➙
§ 0x69 | 0x55 ➙

§ 011010012 | 010101012 ➙

101111102

111111112

010000012

011111012

0xBE

0xFF

0x41

0x7D

28
29

Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Operators always return 0 or 1
§ Early termination (short circuit)

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01

29

9/14/24

8

30

Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Operators always return 0 or 1
§ Early termination (short circuit)

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01

Watch out for && vs & (and || vs |)…

One of the more common mistakes in
beginner C programming!

30
31

Shift Operations

¢ Left Shift: x << y
§ Shift bit-vector x left by y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right by y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left

¢ Undefined Behavior
§ If shift amount is less than 0 or larger than word size

§ Can’t shift left more than or equal to number of bits in type

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

31

32

Practice On Your Own

¢ Assume numbers are represented as 8 bits:
¢ 0xa7 | 0xc2
¢ 0xa7 || 0xc2

¢ 0xa7 & 0xc2
¢ 0xa7 && 0xc2

¢ ~0xa7
¢ !0xa7

¢ 0xa7 >> 3 (logical right shift)
¢ 0xa7 >> 3 (arithmetic right shift)

32
33

In-class Problem

¢ Using only operators: ~ , !, &, |, <<, >>, +, -
¢ int moduloPowerOfTwo(int num, int powerOfTwo)
§ powerOfTwo is an int specifying which power of 2. It cannot be larger than

31.

33

