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“With deliberate practice, however, the goal is not just to reach your potential 
but to build it, to make things possible that were not possible before.  This 
requires challenging homeostasis - getting out of your comfort zone - and 
forcing your brain or your body to adapt.  But once you do this, learning is no 
longer just a way of fulfilling some genetic destiny; it becomes a way of taking 
control of your destiny and shaping your potential in ways that you choose.”

-- Peak: Secrets from the New Science of Expertise by Ericsson and Pool
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Bits, Bytes, and Integers

CSCI 237: Computer Organization
4th Lecture, Friday, September 13

Kelly Shaw

2

3

Administrative Details

¢ Lab #1 due Tuesday at 11pm
§ Any questions?
§ Lab video on Glow – using gdb for bit puzzles

¢ Read CSAPP 2.2
¢ Weekly quiz on Glow due today at 2:30pm
¢ CS Colloquium today in Wege at 2:35pm
¢ Watch 15 minute recorded lecture before Monday
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Last Class

¢ C syntax and examples
§ Control structures

¢ Terminology
¢ Representing information as bits
¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations
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Today’s Class

¢ Representing information as bits
¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations
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Everything is bits!

¢ Each bit is 0 or 1
¢ By encoding/interpreting sets of bits in various ways
§ Computers determine what to do (instructions)
§ … and represent and manipulate numbers, sets, strings, etc…

¢ Why bits?  Convenient for Electronic Implementation
§ Easy to store with bistable elements
§ Reliably transmitted on noisy and inaccurate wires 

0.0V
0.2V

0.9V
1.1V

0 1 0
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We can represent (many) numbers in binary

¢ Base 2 Number Representation
§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104  as 1.11011011011012 X 213

¢ Representing really large numbers, really small numbers, or 
really precise numbers can take many binary digits
§ The largest number we can represent will be finite because of physical 

hardware constraints
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Numbers are numbers but we can display 
them in different bases
¢ Decimal  10  0, 1, …, 8, 9
¢ Binary  2  0, 1
¢ Octal   8  0, 1, 2, …, 6, 7
¢ Hexadecimal 16  0, 1, 2, …, 8, 9, A, B, …, E, F
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¢ Decimal

e.g.)123 = 1×10! + 2×10" + 3×10#

¢ Binary

e.g.)110 = 1×2! + 1×2" + 0×2# = 6 in decimal

Converting from Binary to Decimal

!
𝒊"𝟎

𝒏%𝟏

𝒃𝒊×𝟐𝒊	𝒘𝒉𝒆𝒓𝒆	𝒃𝒊 ∈ {𝟎, 𝟏}

!
𝒊"𝟎

𝒏%𝟏

𝒅𝒊×𝟏𝟎𝒊	𝒘𝒉𝒆𝒓𝒆	𝒅𝒊 ∈ {𝟎, 𝟏, 𝟐, 𝟑, … , 𝟖, 𝟗}
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Converting Decimal to Binary

¢ Iterative process while remaining number != 0
§ Find largest power of 2 that fits into number and call it x.  
§ Set to 1 the binary digit at position lg x
§ Subtract x from number
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Example: Converting Decimal to Binary

¢ 1110

§ Largest power of 2 that fits into 11 is 8
§ lg 8 is 3 so bit 3 will be set to 1
§ 11 – 8 = 3
§ Largest power of 2 that fits into 3 is 2
§ lg 2 is 1 so bit 1 will be set to 1
§ 3 – 2 = 1
§ Largest power of 2 that fits into 1 is 1
§ Lg 1 is 0 so bit 0 will be set to 1
§ 1 – 1 = 0
§ Final result: 10112

11
12

Converting Decimal to Binary (2nd algorithm)

¢ Iterative process while remaining number != 0
§ bit = number % 2

§ Prepend bit to result string
§ number = number / 2

12
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Example: Converting Decimal to Binary (2nd 
algorithm)
¢ 1110

§ bit = 11 % 2 = 1
§ result = 1
§ number = 11 / 2 = 5

§ bit = 5 % 2 = 1
§ result = 11 
§ number = 5 / 2 = 2 
§ bit = 2 % 2 = 0

§ result = 011 
§ number = 2 % 2 = 1
§ bit = 1 % 2 = 1
§ result = 1011

§ number = 1 / 2 = 0
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¢ Digits
§ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

¢ Converting hexadecimal to decimal

e.g.)1𝐵4 = 1×16! + 11×16" + 4×16# = 256 + 176 + 4 =
	436	𝑖𝑛	𝑑𝑒𝑐𝑖𝑚𝑎𝑙	

Hexadecimal

!
𝒊"𝟎

𝒏%𝟏

𝒉𝒊×𝟏𝟔𝒊	𝒘𝒉𝒆𝒓𝒆	𝒃𝒊 ∈ {𝟎, 𝟏, … , 𝟗, 𝑨, 𝑩, 𝑪, 𝑫, 𝑬, 𝑭}
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Hexadecimal

¢ Convert decimal to hexadecimal using 2 algorithms for decimal 
to binary but switch to base 16 instead of base 2.
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Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations
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Bytes: the smallest unit of memory transfer

¢ 1 Byte = 8 bits
§ Binary: 000000002 to 111111112

§ Decimal: 010 to 25510

§ Hexadecimal 0016 to FF16
§ Hex: Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary
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Bytes: the smallest unit of memory transfer

¢ Converting binary <-> hex:
§ One hex character represents 4 bits

§ Split into groups of 4 binary bits
§ “pad” leftmost digit with 0s

¢ Examples:
§ 110012 in hex?
§ 0xfa01 in binary?

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary
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Practice On Your Own (Solns on Glow)

¢ Convert the following decimal number to binary
§ 27

¢ Convert the following binary number to decimal
§ 11001011

¢ Convert the following binary number to hexadecimal
§ 1011101

¢ Convert the following decimal number to hexadecimal
§ 93
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Relationship between Digits and Unique 
Values
¢ What is the total number of unique values we can represent 

with w digits
§ in decimal?
§ in binary?

¢ Definition of lognx?
§ log2x?
§ log10x?

20
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C Primitive types are multiples of bytes

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10

pointer 4 8 8

(number of bytes)

*word size : size of pointer data which is number of bits to specify an address
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Number of Unique values

¢ 1 byte char
§ 2^8 = 256

¢ 2 byte short
§ 2^16 = 65536

¢ 4 byte int
§ 2^32 = 4,294,967,296

¢ 8 byte long
§ 2^64 = 18446744073709551616
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Practice on Your Own

¢ Why do you think there are so many different ways of 
representing whole numbers (i.e., char, short, int, long) in C?
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Today: Bits, Bytes, and Integers

¢ Number representation
§ Conversion between decimal and binary
§ Conversion between hexadecimal, decimal, and binary

¢ Relationship between digits and range of unique values
¢ Bit-level manipulations
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Boolean Algebra (Ch 2.1.6)

¢ Developed by George Boole in 19th Century
§ Algebraic representation of logic

§ Encode “True” as 1 and “False” as 0
And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both

25
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General Boolean Algebras

¢ Operate on sequence of bits
§ Operations applied bitwise

¢ All of the properties of Boolean Algebra apply, but on a per-bit 
basis

01101001
& 01010101
  01000001

01101001
| 01010101
  01111101

01101001
^ 01010101
  00111100

~ 01010101
  1010101001000001 01111101 00111100 10101010
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Bit-Level Operations in C (Lab 1!)

¢ Operations &,  |,  ~,  ^ available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as sequence of bits
§ Arguments applied bit-wise

¢ Examples (char data type)
§ ~0x41 ➙

§ ~010000012 ➙ 
§ ~0x00 ➙

§ ~000000002 ➙
§ 0x69 & 0x55 ➙

§ 011010012 & 010101012 ➙
§ 0x69 | 0x55 ➙

§ 011010012 | 010101012 ➙

101111102

111111112

010000012

011111012

0xBE

0xFF

0x41

0x7D
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Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Operators always return 0 or 1
§ Early termination (short circuit)

¢ Examples (char data type)
§ !0x41  ➙  0x00
§ !0x00  ➙  0x01
§ !!0x41  ➙  0x01

§ 0x69 && 0x55  ➙  0x01
§ 0x69 || 0x55  ➙  0x01
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Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Operators always return 0 or 1
§ Early termination (short circuit)

¢ Examples (char data type)
§ !0x41  ➙  0x00
§ !0x00  ➙  0x01
§ !!0x41  ➙  0x01

§ 0x69 && 0x55  ➙  0x01
§ 0x69 || 0x55  ➙  0x01

Watch out for && vs & (and || vs |)… 

One of the more common mistakes in 
beginner C programming!

30
31

Shift Operations

¢ Left Shift: x << y
§ Shift bit-vector x left by y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right by y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left

¢ Undefined Behavior
§ If shift amount is less than 0 or larger than word size

§ Can’t shift left more than or equal to number of bits in type

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000
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Practice On Your Own

¢ Assume numbers are represented as 8 bits:
¢ 0xa7 | 0xc2
¢ 0xa7 || 0xc2

¢ 0xa7 & 0xc2
¢ 0xa7 && 0xc2

¢ ~0xa7
¢ !0xa7

¢ 0xa7 >> 3 (logical right shift)
¢ 0xa7 >> 3 (arithmetic right shift)
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In-class Problem

¢ Using only operators: ~ , !, &, |, <<, >>, +, -
¢ int moduloPowerOfTwo( int num, int powerOfTwo)
§ powerOfTwo is an int specifying which power of 2. It cannot be larger than 

31.
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