1. True/false statements (2 points each). Justify each answer with a sentence or two.

a. Two instances of class Association in the structure package are equal if and only if their keys are equal, regardless of their values.

True, because the equals() method for an Association is implemented with this behavior. We can verify this using the online structure5 documentation, the structure5 source code, or the description on page 16 in the textbook.

b. An instance variable declared as protected can be accessed by any non-static method of the class in which it is declared.

True. All instance variables can be accessed by any method of the class in which it is declared. (Protected variables can also be accessed by classes that are subclasses of the class in which it is declared). Chapter 1.3 in the textbook describes the ways we often use the public, private, protected, and static keywords within our classes (especially in reference to the encapsulation), and Appendix B.8 gives more details about the specifics.

c. A binary search can locate a value in a sorted Vector in $O(\log n)$ time.

True. We can apply the “divide and conquer” approach to halve the search size at each step. Since the list is sorted, we can rule out at least half of the values in our search space simply by examining the middle value:

- if our target value is greater than (less than) the number, we know it can’t be in the leftmost (rightmost) half of the list. These computations can be done in $O(1)$ time.
- The number of times you can divide a number n by the a number b until you get to 1 is $\log_b(n)$. Once we have a list of size 1, the base case gives the solution in $O(1)$ time.
- (In computer science, we commonly use 2 as the base in our logs, so when we say “$\log(n)$”, we mean $\log_2(n)$ by default. If we want to describe something other than \log_2, then we must specify the base of the log explicitly.)

d. A binary search can locate a value in a sorted SinglyLinkedList in $O(\log n)$ time.
False. Since list elements are not “random access” (i.e., there is no direct reference to
the list’s middle node without traversing all of the links between neighboring nodes
starting at the head of the list), we cannot apply a binary search effectively: we must
walk through the list linearly in order to arrive at the ”middle”. Even though we still
only perform \(O(\log n)\) comparisons, we must perform \(O(n)\) work to traverse the linked
list in order to make each comparison.

e. If a method that has no preconditions is called, all of that method’s postconditions
should be guaranteed to be true when the method returns.

True. Having no precondition implies that the method should work correctly for all
inputs, and the method should terminate with its postcondition true.

Preconditions, postconditions, and assertions are covered in Chapter 2. Note that
preconditions and postconditions are simply expressed as comments, and they therefore
cannot be enforced by the language. It is our job as programmers to provide accurate
preconditions and postconditions. Assertions, on the other hand, let us verify that
certain assumptions hold true at program runtime.

f. The Unix command \texttt{cp /path/to/directory} changes your current working directory to
\texttt{/path/to/directory}.

False. \texttt{cp} is used to copy files and directories, \texttt{cd} changes your current working direct-
ory.

g. Instance variables are specified in an interface file.

False. Instance variables are specified in the class definition, not in the interface. It is
not possible in Java to specify an instance variable in an interface.

An interface is like a contract. It provides a list of methods that an implementing class
\textit{must} complete, but it does not specify any details as to how.

An abstract class may provide some implementation.

Interfaces, abstract classes, and ways to use them in program design are covered in
Chapter 7.

2. Consider the following Java program:

class Container {
 protected int count;
 protected static int staticCount;

 public Container(int initial) {

count = initial;
staticCount = initial;

public void setValue(int value) {
 count = value;
 staticCount = value;
}

public int getCount() {
 return count;
}

public int getStaticCount() {
 return staticCount;
}

class WhatsStatic {

 public static void main(String[] args) {
 Container c1 = new Container(17);
 System.out.println("c1 count=" + c1.getCount() +
 ", staticCount=" + c1.getStaticCount());

 Container c2 = new Container(23);
 System.out.println("c1 count=" + c1.getCount() +
 ", staticCount=" + c1.getStaticCount());
 System.out.println("c2 count=" + c2.getCount() +
 ", staticCount=" + c2.getStaticCount());

 c1.setValue(99);
 System.out.println("c1 count=" + c1.getCount() +
 ", staticCount=" + c1.getStaticCount());
 System.out.println("c2 count=" + c2.getCount() +
 ", staticCount=" + c2.getStaticCount());

 c2.setValue(77);
 System.out.println("c1 count=" + c1.getCount() +
 ", staticCount=" + c1.getStaticCount());
 System.out.println("c2 count=" + c2.getCount() +
 ", staticCount=" + c2.getStaticCount());
 }
}
a. What will the output be when the program is run (java WhatsStatic)? Assume no exceptions occur. (4 points)

<table>
<thead>
<tr>
<th>Count</th>
<th>Static Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>23</td>
<td>99</td>
</tr>
<tr>
<td>99</td>
<td>77</td>
</tr>
<tr>
<td>77</td>
<td>77</td>
</tr>
</tbody>
</table>

b. What memory is allocated for Containers c1 and c2 at the time c1.setValue(99) is executed? Show any existing local variables and instance variables. (6 points)

The references to our two objects are stored in c1 and c2, which are local variables to the main method. The two objects themselves exist, each with its own copy of instance variable count. They share one copy of staticCount.

3. In this problem you are to design a Java interface and class for a data structure which represents sets of Strings. As usual for sets, no repeated elements are allowed. Thus, the collection "Propser", "Anya", "Lisa", "Karl", "Isabella" is a legal set, but "Bill", "Duane", "Bill" is not. This data structure will have two methods:

- void insert(String myString) adds myString to the set if it is not already in the set; if myString is already in the set then insert does nothing.

- boolean contains(String myString) returns a boolean value indicating if myString is an element of the set.

a. Write a legal Java interface called StringSetInterface for this data structure. Include javadoc-style comments for preconditions and postconditions for the methods, as well as their return values where applicable. (You do not need to create javadoc-style comments for the parameters.) (6 points)
public interface StringSetInterface {

 /**
 * @pre: none
 * @post: myString is present exactly once in the set
 */
 public void insert(String myString);

 /**
 * @pre: none
 * @post: none
 * @return: return value indicates if myString was found in the set
 */
 public boolean contains(String myString);
}

b. Suppose we decide to implement StringSetInterface by a class in which a structure5
SinglyLinkedList holds all of the elements. Write the definition of this class. This should
be a full and legal Java class definition with all method bodies filled in. Don’t forget to declare
instance variables, include a constructor, and use qualifiers such as public and protected
when appropriate. You need not repeat your javadoc-style comments for each method from
part a. Please call your class StringSet. (10 points)

public class StringSet implements StringSetInterface {

 protected List<String> stringList;

 public StringSet() {
 stringList = new SinglyLinkedList<String>();
 }

 public void insert(String myString) {
 if (!contains(myString)) {
 stringList.add(new String(myString));
 }
 }

 public boolean contains(char myString) {
 return stringList.contains(myString);
 }
}

c. If StringSet is implemented as in part b, what would the worst-case time complexity be
for the insert operation when the set has n elements? (Use “Big O” notation.) (4 points)
\(O(n)\): the \texttt{contains} operation is \(O(n)\), and the list insertion is \(O(1)\). Summing, we get \(O(n)\) time overall. (Note that if \texttt{insert} did not call \texttt{contains}, this method would be \(O(1)\).)

d. Suppose we design an alternative implementation in which the set is represented by a \texttt{Vector<String>} called \texttt{strVec}. What is the worse-case complexity of \texttt{insert} with this representation? (6 points)

It is still \(O(n)\): we don’t benefit from a Vector’s ability to do efficient random accesses in this case. In an unsorted Vector, the \texttt{contains} operation is already \(O(n)\) time by itself. If the vector is sorted, we can use binary search to check whether the String is already in the set, but we have to move elements to make room for any new String, which is still \(O(n)\) in the worst case.

4. (15 points) Consider the following class, \texttt{ReversibleList}, that extends the \texttt{SinglyLinkedList} class by adding a method for reversing the list.

```java
public class ReversibleList<E> extends SinglyLinkedList<E> {

    public ReversibleList() {
        super();
    }

    /**
     * @post: list is reversed
     */
    public void reverse() {
        if (head != null)
            head = recReverse(head);
    }

    /**
     * @pre: current is not null.
     * @post: list headed by current is reversed;
     * and first Node in that list is returned.
     */
    private Node<E> recReverse(Node<E> current) {
        if (current.next() == null) { // Single-node list
            return current;
        } else {
            Node<E> newHead = recReverse(current.next()); // Explain
            // current.next() now points to final node in reversed list!
            current.next().setNext(current); // Explain
            current.setNext(null); // Explain
            return newHead;
        }
    }
}
```
a. What is the running time of reverse() (3 points)?

\[\text{O}(n). \]

b. Prove using mathematical induction that your answer to part a is correct. (12 points)

We proceed by counting calls to the \texttt{setNext()} method, and claim that there are \(2(n - 1)\) calls needed to reverse a list of size \(n\). We proceed by mathematical induction on \(n\).

- Base: For a list of size 1, there are \(2(1 - 1) = 0\) calls.
- Inductive hypothesis: Assume it takes \(2(k - 1)\) calls to \texttt{setNext()}, where \(k < n\).
- Inductive step: For a list of size \(n\), we know by the inductive hypothesis that the recursive call to \texttt{recReverse()} makes \(2(n - 2)\) calls to \texttt{setNext()}. We make two additional calls, giving a total of \(2(n - 2) + 2 = 2(n - 1)\), which is \(\text{O}(n)\).

5. Growth of functions. Using “Big O” notation, give the rate of growth for each of these functions. Briefly justify your answers (you do not need to use the definition of Big O; just explain how you found your solution). (3 points each, 12 total)

a. \(f(x) = x^2 + 17x + 2001\)

\[\text{O}(x^2), \text{ since for sufficiently large } x, x^2 \text{ is much larger than } 17x \text{ or } 2001. \]

b. \(f(x) = \cos(x^4 + \log x)\)

\[\text{O}(1), \text{ since } \cos \text{ always remains in } [-1, 1]. \]

c. \(f(x) = 7x \text{ when } x \text{ is odd, } f(x) = \frac{x}{7} \text{ when } x \text{ is even.}\)

\[\text{O}(x), \text{ since } f(x) \text{ is always less than } 7x, \text{ and } 7x \text{ is } \text{O}(x). \]

d. \(f(x) = 5x^3 \text{ for } x < 23, f(x) = 37 \text{ otherwise.}\)

\[\text{O}(1), \text{ since } f(x) \leq 5 * (23)^3 \text{ for all } x. \]