public boolean contains(E value) {
 if (root.isEmpty()) return false; //1

 BinaryTree<E> possibleLocation = locate(root, value);//2
 return value.equals(possibleLocation.value()); //3
}

• Here’s an implementation of contains(). Are there any errors in the code?
 A. Line 1
 B. Line 2
 C. Line 3
 D. None
 E. Whatever
Today’s Outline

- Binary Search Tree
 - Basics
 - Operations
 - Implementation
- Balanced Binary Search Trees
 - AVL Tree
 - RB Tree
public void add(E value) {
 BinaryTree<E> node = new BinaryTree<E>(value, EMPTY, EMPTY);
 if (root.isEmpty())
 root = node;
 else {
 BinaryTree<E> loc = locate(root, value);
 E locValue = loc.value();
 if (ordering.compare(locValue, value) < 0)
 loc.setRight(node);
 else {
 if (loc.left() == EMPTY)
 loc.setLeft(node);
 else
 predecessor(loc).setRight(node);
 }
 }
 count++;
// return node with largest value in root’s left subtree
protected BinaryTree<E> predecessor(BinaryTree<E> root) {
 BinaryTree<E> result = root.left();
 while (!result.right().isEmpty())
 result = result.right();
 return result;
}
Today’s Outline

- Binary Search Tree
 - Basics
 - Operations
 - Implementation
- Balanced Binary Search Trees
 - AVL Tree
 - Red-Black Tree
BST Observations

• The same data can be represented by many BST shapes

• Observations:
 • Additions to a BST happen at nodes missing at least one child
 • Removing from a BST can involve any node
 • Searching for a value in a BST takes time proportional to the height h of the tree

\[\log \log n \leq h \leq n \]
Shallow Binary Search Trees

• Strategy: Define a notion of “balance” and enforce balance via rotation.
• There are many strategies for tree balancing to preserve $O(\log n)$ height, including
 • AVL Trees: guaranteed $O(\log n)$ height
 • Red-black trees: guaranteed $O(\log n)$ height
 • B-trees (not binary): guaranteed $O(\log n)$ height
 • 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...
 • Splay trees: *Amortized* $O(\log n)$ time operations
 • Randomized trees: $O(\log n)$ expected height
An AVL Tree is a binary search tree in which every node is balanced (balance factor = 1, 0, or -1).
AVL Trees

 AVL Trees are self-balancing binary search trees. Each node of an AVL tree has an associated balance factor that is the height of the left subtree minus the height of the right subtree. The height of a node is the number of edges on the longest path from the node to a leaf.
Single Rotation (Left)

\[+2 \quad +1 \quad 0 \]

\[A \quad B \quad C \]

\[B \quad C \]

\[B \quad 0 \quad 0 \]

\[A \quad B \quad C \]
Single Rotation (Right)
Double Rotation (Right-Left)
Double Rotation (Left-Right)
Double Rotation (Left-Right)
Today’s Outline

• Binary Search Tree
 • Basics
 • Operations
 • Implementation
• Balanced Binary Search Trees
 • AVL Tree
 • Red-Black Tree
Red-Black Trees

Red-Black tree is a binary search tree with the following characteristics

- Each node is colored *red* or *black*
- The following properties hold:
 - The root is black
 - The leaves (EMPTY) are black.
 - The children of red nodes are black.
 - All paths from a given node to its descendent leaves have the *same number* of black nodes
A Red-Black Tree
(from Wikipedia.org)
Red-Black Tree Insertion

• Steps
 • Add node k to the tree
 • Color k red
 • Enforce Red-Black tree property
 • If k’s parent p is black
 do nothing
 • If k’s parent p is red
 do something
Red-Black Tree Insertion

- Case 1: P's sibling S is red

Credit: Paton, Wisc
Red-Black Tree Insertion

- Case 2: P's sibling S is black

Credit: Paton, Wisc
Red-Black Tree Insertion

Black empty leaves not drawn. 7 just added Black-height still 2.
Red-Black Tree Insertion

Black height still 2, color violation moved up
Red-Black Tree Insertion

Right rotation at 20, black height broken, need to recolor
Red-Black Tree Insertion

Color conditions restored, black-height restored.