Administrative Details

- Lab 8 Today
 - Partners (fill out the form)
 - Optional extensions are challenging!

- Pre-registration info session:
 - Friday @2:30pm

- Sigma Xi talks this week:
 - Thursday + Friday at 4:15pm
Last Time

- Heaps
 - Some Implementation details
Today

• Heaps
 • Finish Implementation details
 • Some analysis + proofs
• Heapsort

• Binary Search Trees
Implementing Heaps

- Strategy: perform tree modifications that always preserve tree *completeness*, but may violate heap property. Then fix.
 - Add/remove never add gaps to array
 - We always add in next available array slot (left-most available spot in binary tree)
 - We always remove using “final” leaf
 - When elements are added and removed, do small amount of work to “re-heapify”
 - pushDownRoot(): recursively swaps large element down the tree
 - percolateUp(): recursively swaps small element up the tree
VectorHeap Summary

• Let’s look at VectorHeap code....

• Add/remove are both $O(\log n)$

• Data is not completely sorted
 • “Partial” order is maintained on all root-to-leaf paths

• Note: VectorHeap(Vector<E> v)
 • Takes an unordered Vector and uses it to construct a heap
 • How?
Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to “heapify” V

• Method I: Top-Down
 • Assume V[0...k] satisfies the heap property
 • Now call percolateUp on item in location k+1
 • Then V[0..k+1] satisfies the heap property

Grow heap one element at a time
Practice Top-Down

Input:
• int a[6] = {7,5,9,1,2,5,4}
 0 1 2 3 4 5 6

 for (int i = 0; i < a.length; i++)
 percolateUp(a, i);

Result: a is a valid heap!

• a = [1|2|4|7|5|9|5]
 0 1 2 3 4 5 6
Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a valid heap, and you want to “heapify” V

- Method II: Bottom-up
 - Assume V[k..n] satisfies the heap property
 - Now call pushDown on item in location k-1
 - Then V[k-1..n] satisfies heap property

Grow heap one element at a time
Practice Bottom-Up

Input:
• \(\text{int } a[6] = \{7,5,9,1,2,5,4\} \)
 \[
 \begin{array}{cccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]
 for (int i = a.length-1; i > 0; i--)
 pushDownRoot(a, i);

Result: \(a \) is a valid heap!
• \(a = [1|2|4|5|7|5|9] \)
 \[
 \begin{array}{cccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 \end{array}
 \]
Let’s Compare

• Which is faster: Top down or Bottom Up?
 • Think about a binary tree: Where do most of the nodes live?
 • Given that most of the nodes are leaves, should we percolateUp or pushDown?
Some Sums (for your toolbox)

\[
\sum_{d=0}^{d=k} 2^d = 2^{k+1} - 1
\]

\[
\sum_{d=0}^{d=k} r^d = \frac{r^{k+1} - 1}{r - 1}
\]

All of these can be proven by (weak) induction.

Try these to hone your skills

The second sum is called a geometric series. It works for any \(r \neq 0 \)
Top-Down vs Bottom-Up

• Top-down heapify: (percolate up) elements at depth \(d\) may be swapped \(d\) times: Total # of swaps is

\[
\sum_{d=1}^{h} d2^d = (h - 1)2^{h+1} = (\log n - 1)2n + 2
\]

(recall: \(h = \log n\))

• This is \(O(n \log n)\)

• Some intuition: most of the elements are in the lowest levels of the tree, so each of them might have to move to root: \(O(\log n)\) swaps per element
Top-Down vs Bottom-Up

• Bottom-up heapify: (push down) elements at depth \(d\) may be swapped \(h-d\) times: Total # of swaps is

\[
\sum_{d=1}^{h} (h - d)2^d = 2^{h+1} - h - 2 = 2n - \log n + 2
\]

• This is \(O(n)\) --- beats top-down!

• Some intuition: most of the elements are in the lowest levels of the tree, so each of them will only be pushed down (swapped) a small number of times

SO COOL!!!
HeapSort

• “Advanced” Selection Sort (review Sel. Sort?)

• Strategy:
 • Make a *max-heap*: array[0…n]
 • array[0] is largest value
 • array[n] is rightmost leaf
 • Take the largest value (array[0]) and swap it with the rightmost leaf (array[n])
 • Call pushDownRoot on array[0] array[0…n-1]
 • Now our heap is one element smaller, but largest element is at end of array.
 • Repeat until array is sorted
HeapSort

- Another $O(n \log n)$ sort method
- Heapsort is not *stable*
 - The relative ordering of elements is not preserved in the final sort
 - Why?
 - There are multiple valid heaps given the same data
- Heapsort can be done *in-place*
 - No extra memory required!!!
 - Great for resource-constrained environments
Heap Sort vs QuickSort

The graph compares the time (in milliseconds) taken by Heap Sort and Quick Sort with respect to the size of the dataset. The blue line represents Heap Sort, while the red line represents Quick Sort. As the size of the dataset increases, the time taken by both sorting algorithms also increases, with Quick Sort generally taking less time than Heap Sort.
Why Heapsort?

- Heapsort is slower than Quicksort in general.
- Any benefits to heapsort?
 - Guaranteed $O(n \log n)$ runtime.
- Works well on mostly sorted data, unlike Quicksort.
- Good for incremental sorting.
More on Heaps

• Set-up: We want to build a large heap. We have several processors available.
• We’d like to use them to build smaller heaps and then merge them together
• Suppose we can share the array holding the elements among the processors.
 • How long to merge two heaps?
 • How complicated is it?
• What if we use BinaryTrees for our heaps?
Mergeable Heaps

- We now want to support the additional *destructive* operation `merge(heap1, heap2)`
- Basic idea: heap with larger root somehow points into heap with smaller root
- Challenges
 - Points how? Where?
 - How much reheapifying is needed
 - How deep do trees get after many merges?
Skew Heap

• Heaps are not necessarily complete BTs
 • Rather than use Vector as underlying data structure, use BT

• Details in book, but...
 • The merge algorithm keeps tree shallow over time
 • **Theorem:** Any set of m SkewHeap operations can be performed in $O(m \log n)$ time, where n is the total number of items in the SkewHeaps
Skew Heap: Merge Pseudocode

SkewHeap merge(SkewHeap S, SkewHeap T)

if either S or T is empty, return the other

if \(T.\text{minValue} < S.\text{minValue} \)

swap S and T \((S \text{ now has } \text{minValue})\)

if S has no left subtree, T becomes its left subtree

else

let temp point to right subtree of S

left subtree of S becomes right subtree of S

merge(temp, T) becomes left subtree of S

return S

Case 1

Case 2

Case 3

(recurse)
Skew Heap: Merge Examples

Figure 13.6: Different cases of the method for s. In (a) one of the heaps is empty. In (b) and (c) the right heap becomes the left child of the left heap. In (d) the right heap is merged into what was the right subheap.
Tree Summary

- Trees
 - Express hierarchical relationships
 - Level ordering captures the relationship
 - i.e., ancestry, game boards, decisions, etc.

- Heap
 - Partially ordered tree based on item priority
 - Node invariants: parent has higher priority than each child
 - Provides efficient PriorityQueue implementation