
Computer Science 136
Data Structures
Lecture #22 (November 15, 2021)

1. Questions?

2. Recall: Binary Search Trees.

(a) An implementation of an OrderedStructure:
add, remove, get, contains, iterator.

(b) When locating values:

i. We return first equal value found.

ii. All values to the left of the root are smaller.

iii. All values to the right of the root are larger.

(c) Duplicate values are stored to left.

(d) removeTop removes the top node of a (sub)tree.
It has to be done with care. Several cases:

i. If top has no left, use right as new root.
Similarly if no right.

ii. If left has no right, stick right under left,
use left as root.

iii. Otherwise, bring predecessor of root up as
new root.

3. Splay Trees. A greedy approach to keeping trees bal-
anced.

(a) A review of rotations. (See Figure 14.4)

(b) We splay (split) the tree “at a node,” x. This
is done by making the accessed node the root.

i. If x is at the root, we’re done.

ii. If x is a child, perform the appropriate ro-
tation of the tree at the root, bringing the
node to the top.

iii. Otherwise, x is at least depth 2. Find the
parent (p) and grandparent(g) of the node.
(Follow with Figure 14.5.)

A. If x is the left child of a left child, then
(1) rotate right about the g (raising
node), and then (2) rotate right about
p (raising x again). (Similar manipula-
tions are performed if node and parent
are both right children.) The opposite
ordering of rotations seems to work, but
does not provide the necessary perfor-
mance guarantees.

B. If x is the right child of a left, then (1)
rotate left about parent (raising node),
and then (2) rotate right about grand-
parent (raising x again). (Similar ma-
nipulations occur in mirrored circum-
stance.) Notice that the opposite or-
dering does not guarantee progress.

iv. Repeat these various rotations until x be-
comes the root. (Note that progress is made
at every step.)

v. Notice that splaying the tree typically re-
quires re-rooting a tree. The splay opera-
tion should return the ideal root.

(c) For add and contains: splay the tree at the
end of the operation.

(d) For remove, we splay at the node’s parent (if
there is one).

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4: Tree rotations

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5: Tree splays

4. Red-Black Trees.

(a) An example that manages the balance of a tree
using an accounting mechanism.

(b) Rules of engagement: All nodes are red or black
(EMPTY is black).

i. All red nodes must have two black children.

ii. All leaves must have two black children.

iii. All paths from a node to its leaves mention
same number of black nodes.

(c) Result: properly managed trees must not have
leaf heights that differ by a factor of more than
two. Therefore, tree has height O(log2 n)

(d) When tree changes, we must spend (a little)
time fixing up the colors. Details are complex,
and discussed in the book.

?


