
Computer Science 136
Data Structures
Lecture #21 (November 10, 2021)

1. Questions?

2. Skew-heap implementation (SkewHeap).

(a) Notion: a merge of two heaps h1 and h2.

i. If one heap is empty, use the other as the
result.

ii. Otherwise, assume the h1 root is smallest:

iii. Case 1: If h1 has no left child: make h2 its
left.

iv. Case 2: Otherwise, swap the children of h1,
and merge h2 with h1’s new left (former
right).

(b) Notice how the leftmost branch appears to be
the target of all merges. But: at each stage,
children are swapped/twisted. Result:

(c) Has amortized logarithmic cost even though the
tree is not necessarily very balanced. Very
cool analysis based on some clever bookkeep-
ing/accounting tricks.

(d) getFirst: return root.

(e) remove: return root after merging children.

(f) add: merge new value with existing heap.

3. Binary Search Trees.

(a) An implementation of an OrderedStructure:
add, remove, get, contains, iterator.

(b) Comparable values are kept in an (internal) bi-
nary tree.

(c) All values to the left of the root are smaller or
equal.

(d) All values to the right of the root are larger.

(e) We write a method locate that determines the
correct location for the value in the tree. Locate
can be used to determine if the tree contains a
value, or to find the best location to insert it.

(f) We have an important notion of the predecessor
and successor of a node in a tree. The predeces-
sor is the rightmost descendent of the left child.
The successor is the opposite. Adding a right
child to the predecessor installs a new prede-
cessor, and vise versa for the left child of the
successor.

(g) removeTop is an important method that allows
you to remove the top node of a (sub)tree. It
has to be done with care. Several cases: study
these.

(h) The iterator is an inorderIterator on the root
of the underlying binary tree.

(i) Rotations.

i. Tree is balanced if, at each node, children
have heights within 1.

ii. Left- and right- rotations fix problems of
balance (See Figure 4.4). Rotations can be
seen as bringing a node higher in the tree.

Notes.


