
Computer Science 136
Data Structures
Lecture #19 (November 1, 2021)

1. Announcements.

(a) Pre-registration is this week. Pre-registration is
necessary to get into CS classes.

(b) Comments on the current lab.

(c) Questions?

2. Trees.

(a) A tree is a recursively defined structure: data-
less end-nodes, or a structure that contains a
single data element and points to an ordered
list (a forest) of other trees (called subtrees).

(b) Not cyclic.

(c) Terminology: root , leaf , interior node, ances-
tor , and descendant .

(d) Terminology: degree (or arity), full node, bi-
nary tree, height , depth (or level), full tree, and
complete tree.

3. Binary Tree implementation.

(a) Not a Structure.

(b) First, notion of a dummy node, or sentinel .
Empty trees are empty nodes – nodes with no
data – so that we may call methods on them.
The other option: null references for empty
trees, but you can’t call methods on null point-
ers, and this leads to significant numbers of tests
for null pointers.

(c) Each node maintains a data value (null in
empty trees), a parent, and two children (left
and right).

(d) Three constructors: no parameters (empty
tree), one parameter (leaf), two parameters (in-
terior node).

(e) Methods: isEmpty, value, setValue,
left/right, setLeft/Right,
isLeft/RightChild, parent, setParent.

(f) N.B. setLeft/Right re-parent the new child’s
parent pointers.

(g) Is an iterable (has an iterator method). How
would you traverse a tree’s nodes?

4. Example: Infinite questions.

5. Since the structure is recursive, many methods are
recursive as well.

(a) size – count of nodes in tree.

(b) height – length of longest path.

(c) root – root of this tree.

(d) depth – length of path to root.

(e) isLinear – (yet to be written) is degree always
less than 2?

(f) isFull – is it “triangular”.

(g) isComplete – is it “almost triangular”.

6. Traversals – a basis for iteration.

(a) Inorder. The root appears after everything in
left subtree and before right.

(b) Preorder. The root appears before left, which
appears before right.

(c) Postorder. The root appears last, after left then
right.

(d) Levelorder. Top to bottom, left to right.

7. Iterators – Tricky. It’s all in the choice of underlying
data structure.

(a) Inorder. At every stage, the current node (top
on stack) and its left subtree have been tra-
versed. A stack keeps track of roots of all trees
not yet fully traversed.

(b) Preorder. At every stage, top item of stack
is current. Popping pushes right subtree, then
left.

(c) Postorder. At every stage, top item is current
(subtrees have been done), and lower items are
ancestors.

(d) Levelorder. Current node is at head of queue.
When dequeuing, add subtrees to queue.

Notes:


