
Computer Science 136
Data Structures
Lecture #18 (October 29, 2021)

Advanced iteration.

1. Announcements.

(a) Very slightly revised lab handout posted.

(b) Pre-registration discussion this afternoon,
Wege, 2:35 pm.

(c) Early seating of final exam:
Tuesday, December 14, 9:30am-noon.

(d) Questions?

2. We’re interested in developing strategies for writing it-
erators that are versatile enough to simulate Python’s
generators.
This lecture explores some ideas.

3. AbstractIterators.

(a) Recall: Java has two important interfaces:
Iterator and Iterable.

(b) An Iterator is any object that provides hasNext

and next methods for generating a stream of values.

(c) An Iterable is any object that provides a
iterator() method. The focus of iterated for

loops is an Iterable.

(d) If you’re interested in developing a standalone value
that produces a stream of values for an iterated for

loop, you must develop object(s) that support both
of these interfaces. This is a subtle observation.

(e) The AbstractIterator class seeks to implement
both of these interfaces:

i. Iterator: The reset, hasNext, get, and next

methods are abstract. You must provide a
definition for each of these.

ii. Iterable: The iterator() method returns
this. It is declared final: you cannot change
this behavior.

(f) Extending the AbstractIterator class will allow
you to design objects that can be the subjects of a
for loop.

4. Implementing the Biterator: an iterator that returns
count binary digits (Integers) of of a value. Focus:
how to implement reset.

5. Implementing PrimeFactors: an iterator that returns
the primes Factors of a value n. Focus: making progress
at the appropriate time.

6. Implementing something like Python’s range object. Fo-
cus: building appropriate static factory methods.

7. Implementing Some: an iterator that returns some of the
values of a subordinate iterable. Focus: making sure you
know when you’re done.

8. Implementing Orbit: an object that maintains an ex-
ternally specified state and its transition function, a
Successor lambda.

Notes:


