
Computer Science 136
Data Structures
Lecture #11 (October 6, 2021)

1. Announcements:

(a) Lab 1 returned. Lab 2 in. Lab 3 out.

(b) Questions?

2. Recall: The Node<T> class: two logical fields, a value and
next, a link to another Node<T>. It is public, so users
outside the structure package could use it for whatever
purposes they desire.

3. Recall: The SinglyLinkedList<T> class, our first
structure-specific object.

(a) Many methods keep track of a “finger” that directs
the focus of the method at hand.

(b) Think about recursive approaches: many require
helper methods.

i. Be prepared to write add(i,v) or remove(v)

recursively.

A. Recursive variants often need helper func-
tions to smooth over the edge cases that
have typically caused us to write head-of-
list-checking if statements. In the future,
we may be able to eliminate both.

B. You must be very careful to make sure your
method works for (0) empty lists or (1) lists
with one element. Only then will it work for
larger lists.

4. Doubly-linked lists.

(a) Every nodes has two links—one to previous node,
the other to the next node.

(b) Insertion and deletion are a bit more complex and
must handle special cases (empty list, or list with
one element, or element at one end of list or other).

(c) But, typically, we keep two pointers in the list: a
pointer to the head, and one to the tail.

(d) Adding a bit more space overhead increases the
speed. Obviously, operations at the tail of the list
will work faster for DoublyLinkedLists.

(e) If you’re insecure about big-O notation and analy-
sis, lists and vectors are a good source of practice
material.

5. Lab this week: Potential improvement in speed and
beauty: Using a dummy node.

(a) Some of the complexity of handling the base case
in linked lists can be avoided by having head (and
tail) reference a dummy node.

(b) The dummy node does not hold data, but is a sen-
tinel for an end of the list. It avoids always having
to check for a null reference.

(c) Consider the code for removing a node from the
middle of a doubly linked list.

(d) How complex is it to write a recursive solution for re-
move from a doubly linked list with dummy nodes?

6. Make sure you read about: CircularList, singly linked,
but has quick access to tail.

7. Next: Sorting.

Notes:


