Computer Science 136
Data Structures
Lecture #9 (September 29, 2021)

1. Announcements:

(a) Lab 0 returned. Go to evolene and ok the merge of
our grading comments into your project. Details in
email from Lida.

(b) Lab 2 out: Recursion. Several problems, some easy,
some more difficult.

(¢) Questions?
2. A design method, using interfaces and abstract classes,
in Java.
(a) Interfaces describe the contract.
(b) Abstract classes implement as much as is possible
without committing to a specific approach.

3. The List<T>, an important Java interface.

(a) Includes many methods: size, clear, isEmpty,
contains, index0f/lastIndex0f, add/remove,
set/get. In addition, many convenience routines:
addFirst/addLast, removeFirst/removelLast.

(b) Notice that many of these methods appear in
Vector. Java’s Vector<T> class implements, among
other things, the List<T> interface.

(c) AbstractList implements many of the convenience
methods — methods that may be cast in terms of
others.

4. The Node<T> class: two logical fields, a value and next,
a link to another Node<T>.

5. The SinglyLinkedList<T> class (structure packages
only).
(a) A complete implementation, based on Node<T>.
(b) Generally implements things iteratively.
(¢) Think about recursive approaches: many require
helper methods.
6. Doubly-linked lists.
(a) Every nodes has two links—one to previous node,
the other to the next node.

(b) Insertion and deletion are a bit more complex and
must handle special cases (empty list, or list with
one element, or element at one end of list or other).

(¢) But, typically, we keep two pointers in the list: a
pointer to the head, and one to the tail.

(d) Adding a bit more space overhead increases the
speed.

7. Potential improvement: Using a dummy node:

(a) Some of the complexity of handling the base case in
linked lists can be avoided with the use of a dummy
node.

(b) The dummy node does not hold data, but is a sen-
tinel for the end of the list. It avoids always having
to check for a null reference.

(¢) Consider the code for removing a node from the
middle of a doubly linked list.

8. Aside: CircularList, singly linked, but has quick access
to tail.

Notes:



