
Computer Science 136
Data Structures
Lecture #9 (September 29, 2021)

1. Announcements:

(a) Lab 0 returned. Go to evolene and ok the merge of
our grading comments into your project. Details in
email from Lida.

(b) Lab 2 out: Recursion. Several problems, some easy,
some more difficult.

(c) Questions?

2. A design method, using interfaces and abstract classes,
in Java.

(a) Interfaces describe the contract.

(b) Abstract classes implement as much as is possible
without committing to a specific approach.

3. The List<T>, an important Java interface.

(a) Includes many methods: size, clear, isEmpty,
contains, indexOf/lastIndexOf, add/remove,
set/get. In addition, many convenience routines:
addFirst/addLast, removeFirst/removeLast.

(b) Notice that many of these methods appear in
Vector. Java’s Vector<T> class implements, among
other things, the List<T> interface.

(c) AbstractList implements many of the convenience
methods — methods that may be cast in terms of
others.

4. The Node<T> class: two logical fields, a value and next,
a link to another Node<T>.

5. The SinglyLinkedList<T> class (structure packages
only).

(a) A complete implementation, based on Node<T>.

(b) Generally implements things iteratively.

(c) Think about recursive approaches: many require
helper methods.

6. Doubly-linked lists.

(a) Every nodes has two links—one to previous node,
the other to the next node.

(b) Insertion and deletion are a bit more complex and
must handle special cases (empty list, or list with
one element, or element at one end of list or other).

(c) But, typically, we keep two pointers in the list: a
pointer to the head, and one to the tail.

(d) Adding a bit more space overhead increases the
speed.

7. Potential improvement: Using a dummy node:

(a) Some of the complexity of handling the base case in
linked lists can be avoided with the use of a dummy
node.

(b) The dummy node does not hold data, but is a sen-
tinel for the end of the list. It avoids always having
to check for a null reference.

(c) Consider the code for removing a node from the
middle of a doubly linked list.

8. Aside: CircularList, singly linked, but has quick access
to tail.

Notes:


