Computer Science 136

Data Structures Lecture #7 (September 24, 2021)

- 1. Announcements:
 - (a) Labs due on Tuesday; the cycle begins!
 - (b) Questions?
- 2. Complexity (left over from Wednesday!):
 - (a) Formal definition of what it means for f(x) to be O(g(x)). A definition worth remembering. Write it here:
 - i. f(x) is bounded above by some constant times g(x).
 - ii. f(x) need not ever be equal to $c \cdot g(x)$. The bound need not be *tight*.
 - iii. It only needs to be bounded above to the right of some x_0 .
 - iv. Really, we're only concerned about the magnitude of f(x). In practice, $f(x) \ge 0$ since f is often a measure of time or space utilization.
 - (b) Typical approach to "simplifying" a complex function to it's big-O equivalent:
 - i. If a function is a sum of terms, keep the term that grows the fastest. For example, $\frac{1}{2}n^2 \frac{n}{2}$, you keep just the $\frac{1}{2}n^2$ term; in the long run, the polynomial's trend is governed by this term.
 - ii. Thus, the function has a single term. If this term has a coefficient that is not 1, cross out the coefficient. Thus, $\frac{1}{2}n^2$ is $O(n^2)$ —a quadratic—and f = 1000 is written O(1)—a constant function.
 - iii. Logarithms of all bases are related by a constant. Thus, it does not matter if $f(n) = \log_2 n$ or $f(n) = \ln n$: they're both written $O(\log n)$.
 - (c) E.g.: Vectors that extend to size n by 1 requires $\frac{n(n-1)}{2}$ copies of old data to new, or $O(n^2)$ time. When you double the Vector's length, the time to expand increases by 4.
 - (d) E.g.: Vectors that extend to size n by doubling takes copies old data new new in $2^{\log_2 n} 1 = n 1$ steps, or O(n) time.

When you double the Vector's length, the time to expand increases by 2.

- 3. Recursion: big ideas, little code.
 - (a) Basic idea: Reduce hard problem to simpler problem plus a little work.
 - i. Base case. The simplest problem(s) you can solve. Think zero.
 - ii. Progress. If not a base case, a little bit of work necessary to reduce problem to a simpler problem.
 - iii. Recursion. A call to (perhaps another) method that solves the subproblem.
 - (b) Counting down to zero from n:
 - i. Base case: if n == 0: count 0, we're done.
 - ii. Progress: Count n. Now only n-1 to zero is left.
 - iii. Recursion: Count down from n-1.
 - (c) Reversing a string: reverse("bard") is "drab" and reverse("grub") is "burg". (This, of course, is helpful for finding *palindromes*, but just as helpful in finding even more exotic *semordnilaps*.)
 - (d) The hello, world of recursion: Towers of Hanoi.
 - (e) Print all substrings of a string (!), printSubstrings(s).
- 4. Challenge: Can you write down the *n* distinct values $x_i \in \{1...n\}$ in an order such that that makes $x_i + x_{i+1}$ a perfect square for $0 \le i < n$?

XKCD NUMBER 244