
Computer Science 136
Data Structures
Lecture #7 (September 24, 2021)

1. Announcements:

(a) Labs due on Tuesday; the cycle begins!

(b) Questions?

2. Complexity (left over from Wednesday!):

(a) Formal definition of what it means for f(x) to be
O(g(x)). A definition worth remembering. Write it
here:

i. f(x) is bounded above by some constant times
g(x).

ii. f(x) need not ever be equal to c · g(x). The
bound need not be tight .

iii. It only needs to be bounded above to the right
of some x0.

iv. Really, we’re only concerned about the magni-
tude of f(x). In practice, f(x) ≥ 0 since f is
often a measure of time or space utilization.

(b) Typical approach to “simplifying” a complex func-
tion to it’s big-O equivalent:

i. If a function is a sum of terms, keep the term
that grows the fastest. For example, 1

2n
2 − n

2 ,
you keep just the 1

2n
2 term; in the long run, the

polynomial’s trend is governed by this term.

ii. Thus, the function has a single term. If this
term has a coefficient that is not 1, cross out the
coefficient. Thus, 1

2n
2 is O(n2)—a quadratic—

and f = 1000 is written O(1)—a constant func-
tion.

iii. Logarithms of all bases are related by a con-
stant. Thus, it does not matter if f(n) = log2 n
or f(n) = lnn: they’re both written O(log n).

(c) E.g.: Vectors that extend to size n by 1 requires
n(n−1)

2 copies of old data to new, or O(n2) time.
When you double the Vector’s length, the time to
expand increases by 4.

(d) E.g.: Vectors that extend to size n by doubling
takes copies old data new new in 2log2 n− 1 = n− 1
steps, or O(n) time.
When you double the Vector’s length, the time to
expand increases by 2.

3. Recursion: big ideas, little code.

(a) Basic idea: Reduce hard problem to simpler prob-
lem plus a little work.

i. Base case. The simplest problem(s) you can
solve. Think zero.

ii. Progress. If not a base case, a little bit of work
necessary to reduce problem to a simpler prob-
lem.

iii. Recursion. A call to (perhaps another) method
that solves the subproblem.

(b) Counting down to zero from n:

i. Base case: if n == 0: count 0, we’re done.

ii. Progress: Count n. Now only n-1 to zero is left.

iii. Recursion: Count down from n-1.

(c) Reversing a string: reverse("bard") is "drab" and
reverse("grub") is "burg". (This, of course, is
helpful for finding palindromes, but just as helpful
in finding even more exotic semordnilaps.)

(d) The hello, world of recursion: Towers of Hanoi.

(e) Print all substrings of a string (!),
printSubstrings(s).

4. Challenge: Can you write down the n distinct values
xi ∈ {1...n} in an order such that that makes xi + xi+1

a perfect square for 0 ≤ i < n?

xkcd number 244


