Computer Science 136
Data Structures
Lecture #6 (September 22, 2021)

1. Vectors.

(a)

Abstract concept: the extensible array.
i. Vectors start “empty,” though some array has
usually been allocated.
ii. Grows (and, possibly, shrinks) as needed.
iii. Efficient in time and space.

Uses methods get/set/add/remove, not square-
bracket indexing.

Reshaping occurs through add(position,value)
and remove (position).
Utility methods: isEmpty and size.
Implementing extensibility:
i. Keep track of two lengths: the array length and
the vector length.
ii. Allow some guidance by user.
iii. Keys to efficiency:
A. double array length when necessary (why is
this efficient?)

B. details encapsulated in
ensureCapacity

protected

C. shrinking is not automatic (use non-ideal
trimToSize explicitly). But: it could be.

2. Complexity.

(a)

Formal definition of what it means for f(x) to be
O(g(z)). A definition worth remembering (see p.
98). Write it here:

i. f(x) is bounded above by some constant times
9(@).

g(n)
f q(n)
f(n) ® g(n)

f(n)

(b)

iv. Really, we’re only concerned about the magni-
tude of f(z). In practice, f(x) > 0 since f is
often a measure of time or space utilization.

E.g.: Vectors that extend to size n by 1 takes O(n?)
time.

When you double the Vector’s length, the time to
expand increases by 4.

E.g.: Vectors that extend to size n by doubling
takes O(n) time.

When you double the Vector’s length, the time to
expand increases by 2.

100 \znr‘ ;
n‘H | // n
80 {( I /
| | /'n log(n)
['n?
o 1"
[ /
!] /
40 {U /
/
oy
20| | //
/ sqri(n)
Y mm-omTIoTIIIIIIIIIIT log(n)
o Wz
0 20 40 60 80 100

A similar definition of what it means for f(z) to be
Q(g(x)), a lower bound.

Any function that is both O(g(z)) and Q(g(z)) is
O(g(x))-
Little versions, o(x) and w(z), are asymptotic

bounds. They hold true for arbitrary positive con-
stants, c.

n n

ii. f(z) need not ever be equal to ¢ - g(x). The

bound need not be tight.
iii. It only needs to be bounded above to the right
of some xg.

n



