
Computer Science 136
Data Structures
Lecture #6 (September 22, 2021)

1. Vectors.

(a) Abstract concept: the extensible array.

i. Vectors start “empty,” though some array has
usually been allocated.

ii. Grows (and, possibly, shrinks) as needed.

iii. Efficient in time and space.

(b) Uses methods get/set/add/remove, not square-
bracket indexing.

(c) Reshaping occurs through add(position,value)

and remove(position).

(d) Utility methods: isEmpty and size.

(e) Implementing extensibility:

i. Keep track of two lengths: the array length and
the vector length.

ii. Allow some guidance by user.

iii. Keys to efficiency:

A. double array length when necessary (why is
this efficient?)

B. details encapsulated in protected
ensureCapacity

C. shrinking is not automatic (use non-ideal
trimToSize explicitly). But: it could be.

2. Complexity.

(a) Formal definition of what it means for f(x) to be
O(g(x)). A definition worth remembering (see p.
98). Write it here:

i. f(x) is bounded above by some constant times
g(x).

nnn

g(n)

f(n)
f(n)

g(n)

g(n)

f(n)

ii. f(x) need not ever be equal to c · g(x). The
bound need not be tight .

iii. It only needs to be bounded above to the right
of some x0.

iv. Really, we’re only concerned about the magni-
tude of f(x). In practice, f(x) ≥ 0 since f is
often a measure of time or space utilization.

(b) E.g.: Vectors that extend to size n by 1 takes O(n2)
time.
When you double the Vector’s length, the time to
expand increases by 4.

(c) E.g.: Vectors that extend to size n by doubling
takes O(n) time.
When you double the Vector’s length, the time to
expand increases by 2.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

(d) A similar definition of what it means for f(x) to be
Ω(g(x)), a lower bound.

(e) Any function that is both O(g(x)) and Ω(g(x)) is
Θ(g(x)).

(f) Little versions, o(x) and ω(x), are asymptotic
bounds. They hold true for arbitrary positive con-
stants, c.

