Computer Science 136
Data Structures
Lecture #3 (September 14, 2021)

Organization and workflow.

1. Announcements:

(a)

(b)

()

(d)

(e)

The first lab (“lab 0”) is available on the web.
Labs are typically released Tuesday afternoon.
Labs will be due on the following Tuesday at 5.

Make sure you have tested your username and pass-
word on one of our machines in TCL 217a or
TCL 312 before you arrive for the lab meeting.
The combination for all labs is: 3-9-2-7-8-1.

Third floor locks: press hash mark (#) before combo.

Labs are 75 minutes, but we expect that some labs
will take considerably longer, on your own.
This week we hope to be done by the end of lab.

TAs are available (probably in TCL 312) for most
days of the week. Check the calendar:

https://tinyurl.com/cs136-calendar

Questions?

2. Organization of Java programs:

(a)

(b)
()

All code is part of some class definition.
Every class is described in a file of the same name.

i. Most classes describe how objects are con-
structed, accessed, and modified. The class
java.lang.String is an example of this. Most
classes in Python have this structure.

ii. Some classes contain collections or “libraries” of
static methods. These classes are not meant
to be factories for creating objects; they're
simply an organizational structure. The class
java.lang.Math is an example of this.

Some class has a main method.
That class is what we run with java.

When Java compiles code, it identifies types/classes
that have not been defined and compiles those
classes first. Java may automatically compile many
classes!

Generally, Java searches for class definitions a
.class in the current directory. If one is not found,
it searches for a .java to compile. If neither are
found, the search continues in the directories men-
tioned in the “class path.” More about this later.

3. Coursework organization.

(a)

(b)

(e)

We will use various machines in the Computer Sci-
ence environment. Your account gets you access to
more than 100 CS machines in 5 labs.

On Mac computers, your home directory is stored
locally: you have a different home directory on each
computer. If you use a different Mac each week, you
will have to set up a new environment each week.

On Ubuntu computers, your home directory is
stored on a server: you have one home directory,
visible from each of the Ubuntu machines. Only
one setup is necessary.

Wherever you work, we suggest you create a dedi-
cated cs136 directory to hold all your work for that
environment. Your labs (and other resources) will
be stored as subdirectories under cs136.

Soon, we will also show you how to store instructor
examples and Java Structures resources under the
cs136 directory.

4. We will be using the git version control system to keep
track of your work:

(a)

(b)

Logically, we save our work on our GitLab server,
evolene, in private repositories. These repositories
are initially constructed on the Tuesday before lab.

The first time we work on a lab in a particular en-
vironment, we clone the repository from evolene.
That command looks something like:

cd “/cs136

git clone ...lab3-URL...

where ...lab3-URL...
repository.

is the specification of your

Alternatively, if you're returning to work on an ex-
isting repository, you don’t clone, you pull down
any new versions you might have tracked elsewhere:

cd “/cs136/1ab3
git pull
You work, editing files, changing content.

If you modify (or create) a file, £. java in the repos-
itory, you need to tell git that you want it to keep
track of this version of that file:

git add f.java

You may add as many files as you want, either in a
single command or in several.

()

)

When you are finished add-ing files to be tracked,
you commit your work, specifying a message that
describes this version:

git commit -m ’Fixed a spelling error.’

We suggest that you add and commit frequently.
This will allow you to document the progress you
are making on your code. It will allow you better
control if you need to reverse any changes you make.

Whenever you leave the lab, always add, commit,
and then push your work to the server:

git push

Because you are making changes to the server, it
will ask you for your password. Once it is finished
with the push, you can logout and leave the lab.
This workflow—pull, edit, add, commit, and
push—will ensure whatever machine you use, you
are always working on latest version.

The git status command will help you keep track
of the status of your files:

i. Untracked files. These files are not being
tracked. Changes to these files will not be
recorded on the server. Either they’re unim-
portant to you, or you should add them.

ii. Changes not staged. These files have changes
that have not been included in the latest ver-
sion. You should add them to some commit
before your next push.

iii. Changes to be committed. Changes in these
files have been added, but you must commit
them for those changes to be remembered.

iv. Your branch is ahead.... You have success-
fully committed one or more versions of your
project that have not been pushed up to the
server. You must push the commits to the
server to make sure they are visible to other
computers.

The git log command will help you see the
progress you are making on the project.
i. To see the list of versions you’ve committed,
type
git log

iii.

This will generate a list of entries that look like
these:
commit belfab0f215aa7eb76e2. ..
Author: Duane A. Bailey <bailey@...
Date: Wed Sep 8 10:23:24 2021

Fixed spelling error.

commit £0d03b4ddbe5a979elde. ..
Author: Duane A. Bailey <bailey@...
Date: Tue Sep 7 13:04:09 2021

Lab ready for testing.

Instead of version numbers, each commit is de-
scribed by a string of digits in base 16 (a num-
ber system that uses digit values 0-9 and a-f).
These strings are essentially random (a small
edit generates a very big change in the string).
It is typically safe to describe a version with the
first 7 or more letters of the commit string.

ii. The command

git log --one-line
prints a very compact version of the log file with
lines that look like:

belfab0 Fixed spelling error.
£0d03b4 Lab ready for testing.

The commit strings are useful if you need to
recover work from an older version (we’ll not
discuss that, but the details are available on
line).

Notes:

