Williams College

Lecture 28

Hashing & Hash Tables

e Hashing
o Fingerprints
o Applications

O

Hash Function

e Hash Tables

O O O O

Open Addressing
Chaining

structure Package
Applications

CSCI136 1

Williams College Data Structures & Advanced Programming
2 g g

Hashing

Williams College

Data Structures & Advanced Programming

Hashing and Hash Tables

Previously, we saw how ordered keys allow dictionaries to outperform arbitrary maps.
Now we'll consider another improvement upon an arbitrary map.

This improvement involves computing a hash of each key.

hash
keys function hashes

; 00

John Smith
01
Lisa Smith -
03
04

Sam Doe

05

Sandra Dee

15

A hash is a somewhat random and
efficient meal.

A hash function.

A hash table orders keys absolutely (rather than relatively) by their hash value.
A nice analogy for hash functions is fingerprinting.

CSCI136 3

Williams College Data Structures & Advanced Programming CSCI 136 4

Fingerprints

Williams College

Fingerprint History

The history of fingerprinting dates back thousands of years, with modern advances beginning in

the late 19th century.

Data Structures & Advanced Programming

~1000-2000 B.C. - Fingerprints were used on clay tablets for business transactions in ancient Babylon.
3rd Century B.C. - Thumbprints begin to be used on clay seals in China to “sign” documents.

610-907 A.D. - During the T'ang Dynasty, a time when imperial China was one of the most powerful and wealthy regions of the
world, fingerprints are reportedly used on official documents.

1st Century A.D. - A petroglyph located on a cliff face in Nova Scotia depicts a hand with exaggerated ridges and finger whorls,
presumably left by the Mi'kmaq people.

1882 - Gilbert Thompson, employed by the U.S. Geological Survey in New Mexico, uses his own fingerprints on a document to guard
against forgery. This event is the first known use of fingerprints for identification in America.

1883 - “Life on the Mississippi,” a novel by Mark Twain, tells the story of a murderer who is identified by the use of fingerprints. His
later book "Pudd'n Head Wilson” includes a courtroom drama involving fingerprint identification.

1888 - Sir Francis Galton’s began his study of fingerprints during the 1880s, primarily to develop a tool for determining genetic history
and hereditary traits. Through careful study of the work of Faulds, which he learned of through his cousin Sir Charles Darwin, as well
as his examination of fingerprints collected by Sir William Herschel, Galton became the first to provide scientific evidence that no two
fingerprints are exactly the same, and that prints remain the same throughout a person’s lifetime. He calculated that the odds of
finding two identical fingerprints were 1 in 64 billion.

1892 - Galton’s book “Fingerprints” is published, the first of its kind. In the book, Galton detailed the first classification system for
fingerprints; he identified three types (loop, whorl, and arch) of characteristics for fingerprints (also known as minutia). These
characteristics are to an extent still in use today, often referred to as Galton’s Details.

http://www.fingerprintamerica.com/fingerprinthistory.asp

http://www.fingerprintamerica.com/fingerprinthistory.asp

Williams College Data Structures & Advanced Programming CSCI136 6

2

Fingerprint Types

Fingerprints can be divided into different basic types, and then further divided into subtypes.

AN

o
-

Loop (right) Tented Arch
5% of prints 60-65% of prints 30-35% of prints a special type of arc

Williams College Data Structures & Advanced Programming CSCI136 7

Numerical Classification of Fingerprints
Mapping fingerprints to numbers.

Classifying

Before computerisation, manual filing systems were used in large fingerprint repositories. Manual classification systems were based on the general ridge patterns of several or all fingers (such as the
presence or absence of circular patterns). This allowed the filing and retrieval of paper records in large collections based on friction ridge patterns alone. The most popular systems used the pattern class
of each finger to form a key (a number) to assist lookup in a filing system. Classification systems include the Roscher system, the Juan Vucetich system, and the Henry Classification System. The
Roscher system was developed in Germany and implemented in both Germany and Japan, the Vucetich system (developed by a Croatian-born Buenos Aires Police Officer) was developed in Argentina
and implemented throughout South America, and the Henry system was developed in India and implemented in most English-speaking countries.['%

In the Henry system of classification, there are three basic fingerprint patterns: loop, whorl and arch,['"] which constitute 60-65%, 30-35% and 5% of all fingerprints respectively.[cation needed] There are
also more complex classification systems that break down patterns even further, into plain arches or tented arches,'?! and into loops that may be radial or ulnar, depending on the side of the hand toward
which the tail points. Ulnar loops start on the pinky-side of the finger, the side closer to the ulna, the lower arm bone. Radial loops start on the thumb-side of the finger, the side closer to the radius. Whorls
may also have sub-group classifications including plain whorls, accidental whorls, double loop whorls, peacock's eye, composite, and central pocket loop whorls.[10]

Other common fingerprint patterns include the tented arch, the plain arch, and the central pocket loop.

The system used by most experts, although complex, is similar to the Henry System of Classification. It consists of five fractions, in which A stands for right, L for left, i for index finger, m for middle finger,
t for thumb, rfor ring finger and p(pinky) for little finger. The fractions are as follows: Ri/Rt + Rr/Rm + Lt/Rp + Lm/Li + Lp/Lr. The numbers assigned to each print are based on whether or not they are
whorls. A whorl in the first fraction is given a 16, the second an 8, the third a 4, the fourth a 2, and 0 to the last fraction. Arches and loops are assigned values of 0. Lastly, the numbers in the numerator
and denominator are added up, using the scheme:

(Ri+Rr+Lt+Lm+ Lp)/(Rt+ Rm + Rp + Li + Lr)
and a 1 is added to both top and bottom, to exclude any possibility of division by zero. For example, if the right ring finger and the left index finger have whorls, the fractions would look like this:
0/0 + 8/0 + 0/0 + 0/2 + 0/0 + 1/1, and the calculation: (0 +8 +0+0+0+1)/(0+0+0+2+0+1)=9/3=3.

Using this system reduces the number of prints that the print in question needs to be compared to. For example, the above set of prints would only need to be compared to other sets of fingerprints with a
value of 3.' https://en.wikipedia.org/wiki/Fingerprint

To aid in the look-up process there are systems for mapping each print to a number.
Many prints map to the same number, and these prints are considered individually.

https://en.wikipedia.org/wiki/Fingerprint

Williams College Data Structures & Advanced Programming CSCI136 8

Hash Functions

Williams College

Hash Function
A hash function f maps keys to integers.

Hash functions is good (i.e., useful in practice) when the following properties hold:
1. The function can be evaluated quickly.

2. The range of the function is used uniformly or close to uniformly.

Data Structures & Advanced Programming

Approximately the same number of arrows enter each point.
In other words, this function f spreads out evenly across its range.

The values of a hash function f are often large integers and the result is taken modulo M.

CSCI136 9

The result can be viewed as a new hash function f’ (with the same domain and a smaller range).

e Choosing M to be a prime is often helpful.
e Mis often the size of array used to store the values in a hash table.

Williams College Data Structures & Advanced Programming CSCI136 10

Applications

Williams College Data Structures & Advanced Programming CSCI 136 11

Fingerprinting as a Metaphor

Let's focus on the following aspects of fingerprints:

e They reduce a lot of information down to a little information.
o This information can be further reduced down to an individual number.

e This fingerprint can be obtained quickly.
o Faster than a full DNA test.

e Two individuals with the same fingerprint, or the same fingerprint number, are probably

the same individual, but not necessarily.
o Two fingerprints that have the same number can be checked manually.

In computer science we often have similar goals.

Villiams College Data Structures & Advanced Programming

Application: Duplicate Testing

Suppose that we have a large collection of documents and we'd like to determine if any are

duplicates.

Document 1 Document 2

Idea: Compute a hash value for each document.

The hash function should be fast to evaluate.

False positives should be rare and can be checked thoroughly.

Same idea works for images, files, etc.
What are good/bad choices for the hash function?

CSCI 136 12

Williams College

Data Structures & Advanced Programming CSCI136 13

Application: Efficient Maps using Hashing

Suppose that we'd like to implement a map or dictionary with expected O(1)-time for the most
common operations of get, put, and remove? This will be our primary application for hashing.

BCC
Falcons

0 1 2 3 4 5 6

We want to store the (key, value) pairs in an array.
We'll use the hash of each key to determine its index.
In this example, f(BCC) = 2, so we store (key, value) for BCC in index 2.

Think of a dictionary with dynamic data
(i.e., (key, value) pairs are added and removed).

Idea: Compute the hash function for the key, and use this as the index into the array.
e How big should the array be?

e What happens when keys map to the same integer?

Williams College Data Structures & Advanced Programming CSCI 136 14

Hash Tables

Williams College Data Structures & Advanced Programming CSCI 136 15

Hash Table

A hash table is a data structure that includes two parts:
a) An array of size M that stores values.
b) A hash function that maps values to indices {0, 1, ..., M-1}. Remember that the function may be taken modulo M.

When a hash table is used to implement a map, the values are actually (key, value) pairs, and the
hash function maps keys to indices.

A hash table with an array of length M = 7.
The hash function will map all values (or keys in (key, value) pairs) to indices in {0, 1, ..., 6}.
(Or the results of the hash function will be taken modulo 7 to make the above true.)

A collision occurs when two different values (or keys in (key, value) pairs) map to the same index.
e This will happen infrequently if the hash function’s range is significantly smaller than M,
and if the hash function is good.

Williams College Data Structures & Advanced Programming CSCI 136 16

Example: Phone Numbers

Suppose that we wish to maintain a collection of ~100 phone numbers.
What would be a good hash function for this type of data?

IMPORTANT PHONE NUMBERS (Area code 619)
Adult Enrichment Center ... 667.1322 Fire (Business) 667.1355

Animal Conirol
Building Inspection 667.1176
Business Licenses 667.1118

Siorm Water Hotline......... 667.1134
Streetlight Mainl. 667.1450
Traffic Eng. Hotiine 667.1144

A list of phone numbers.

A good function would be the last two digits, or the sum of all of the digits.
A bad function would be the first two digits.

Regardless of the choice there could still be collisions.

Williams College ata Structures & Advanced Programming CSCI 136 17

Example: Strings

English words can be mapped to base-26 numbers in the normal way:

ALPHABET
01114701419

This number can then be mapped to a base-10 number in the normal way:
0267+ 11-26% + 14:26° + 7-26* + 0-26% + 1-26% + 4-26" + 19-26"
This is a good hash function in many situations and for many different values of M.

e It can be applied to different string data.
e What about binary string data?

Williams College Data Structures & Advanced Programming CSCI136 18

Resolving Collisions

There are two basic approaches to resolving collisions.

1. Chaining.
2. Open Addressing.

They have different pros and cons depending on the situation.

Williams College Data Structures & Advanced Programming CSCI 136 19

Chaining

Williams College Data Structures & Advanced Programming CSCI136 20

Chaining

In chaining the entries of the array are actually references to unsorted linked lists.
In other words, the array entries are like the buckets in bucket sort.

0 1 2 3 4 5 6 7 8 9
2 hash=1 2 1 hash=4 1 1 hash=7 1 2
! !
hash=1 hash=7
!
hash=1

A hash table that uses chaining to handle collisions.

put: Add the new entry to the front of the appropriate linked list.
get: Travel through the appropriate linked list to find the entry.
remove: Travel through the appropriate linked list to find and delete the entry.

Williams College Data Structures & Advanced Programming CSCI 136 21

Open Addressing

Williams College

Data Structures & Advanced Programming

Open Addressing

In open addressing the next open entry of the array is used during insertions.
Depending on the order of insertions the next open entry could be after an entry with a different hash value.

0

1

2

3

4

5

6

9

8

9

hash=2 hash=4 hash=7 hash=9
hash=2 | hash=2 | hash=4 hash=7 hash=9
hash=2 | hash=2 | hash=4 | hash=2 hash=7 hash=9
hash=9 hash=2 | hash=2 | hash=4 | hash=2 hash=7 hash=9

A sequence of insertions into a hash table that uses open addressing for collisions.
The top row shows four values in the hash table. Then successive rows show the result of put on values that hash to 2, 2, 2, and 9, respectively.

put: Add the new entry to the next open entry to the right (wrapping-around).

get: Start at the correct entry and proceed right until finding it or an empty entry.

remove: Start at the correct entry and proceed right to find the entry if it exists. Delete the
value and rehash the values to the right until there is an empty entry.

Williams College Data Structures & Advanced Programming CSCI 136 23

structure Package

Williams College Data Structures & Advanced Programming

public class Hashtable<K,V> implements Map<K,V>, Iterable<V>
{
[%%
% A single key-value pair to be used as a token
% indicating a reserved location in the hashtable.
* Reserved locations are available for insertion,
* but cause collisions on lookup.
*/
protected static final String RESERVED = "RESERVED";
[%%
% The data associated with the hashtable.
*/
protected Vector<HashAssociation<K,V>> data;
[%%
% The number of key-value pairs in table.
7

protected int count;

[%%
% The maximum load factor that causes rehashing of the table.
*/

protected final double maximumLoadFactor = 0.6;

[%%

Construct a hash table that is capable of holding at least
initialCapacity values. If that value is approached, it will
be expanded appropriately. It is probably best if the capacity
is prime. Table is initially empty.

@pre initialCapacity > @
@post constructs a new Hashtable

* K X ¥ X ¥ *

Take a look at Hashtable. java and related files.

CSCI 136 24

Williams College Data Structures & Advanced Programming CSCI 136 25

Applications

CSCI 136 26

Applications

The three most important algorithms at Yahoo (according to Udi Manber) are:
1. Hashing.
2. Hashing.
3. Hashing.

There are several reasons for this:
e In practice the expected run-time is often the most important measurement, whereas in
theory we usually concentrate on worst-case run-time.
e Big companies often don't mind paying for extra storage space.
e There are many different types of applications of hashing.

In some cases the application only works because the underlying hash function has a specific
property. We will see an example of this on the next slide.

Application: File Integrity

Suppose that we want to ensure that a particular file was downloaded correctly from the
internet.

Idea: The website provides a hash for the file, and the downloader verifies that the download
was correct by making sure that their hash of the file is the same.

For this application we need the following properties:
e The hash function should be sensitive to small changes in the file.
e Both parties use the same hash function.

CSCI 136 27

CSCI 136 28

Application: Cryptographic Hash

Suppose that we want to detect if a particular file is modified, without keep a second copy of
it.

Idea: Store a hash of the file. We can detect modifications to the file by checking its hash
value.

For this application we need the following properties:
e It should be very difficult to create a second file with the same hash value.
In other words, finding inverses should be very difficult.

Villiams College Data Structures & Advanced Programming

Application: Detecting Similarity

Suppose that we want to check a large number of images for similarity.

Idea: Compute a hash value for each file. If similar images map to similar hash values, then
we can sort the hash values and check for close values.

For this application we need the following properties:
e Similar items have similar hash values.

CSCI 136 29

Application: Substring Matching

Suppose that we want to find a substring of length k in a larger string of length n.
How long will this take using brute force?

Idea: Compute a hash value for each substring of length k.

For this application we need the following properties:

CSCI 136 30

e The hashvalue of s_ s, .. s, should be computable quickly from the hash value of s s, ..

s, 1, SO that it can be updated. (The hash functions for strings that we discussed does
have this property.

