
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 28

● Hashing
○ Fingerprints
○ Applications
○ Hash Function

● Hash Tables
○ Open Addressing
○ Chaining
○ structure Package
○ Applications

Hashing & Hash Tables

Data Structures & Advanced Programming 2Williams College CSCI 136

Hashing

Data Structures & Advanced Programming 3Williams College CSCI 136

Previously, we saw how ordered keys allow dictionaries to outperform arbitrary maps.
Now we’ll consider another improvement upon an arbitrary map.
This improvement involves computing a hash of each key.

A hash table orders keys absolutely (rather than relatively) by their hash value.
A nice analogy for hash functions is fingerprinting.

A hash function.
A hash is a somewhat random and

efficient meal.

Hashing and Hash Tables

Data Structures & Advanced Programming 4Williams College CSCI 136

Fingerprints

Data Structures & Advanced Programming 5Williams College CSCI 136

Fingerprint History
The history of fingerprinting dates back thousands of years, with modern advances beginning in
the late 19th century.

http://www.fingerprintamerica.com/fingerprinthistory.asp

http://www.fingerprintamerica.com/fingerprinthistory.asp

Data Structures & Advanced Programming 6Williams College CSCI 136

Fingerprint Types
Fingerprints can be divided into different basic types, and then further divided into subtypes.

Whorl
30-35% of prints

Arch
5% of prints

Loop (right)
60-65% of prints

Tented Arch
a special type of arc

Data Structures & Advanced Programming 7Williams College CSCI 136

Numerical Classification of Fingerprints
Mapping fingerprints to numbers.

https://en.wikipedia.org/wiki/Fingerprint

To aid in the look-up process there are systems for mapping each print to a number.
Many prints map to the same number, and these prints are considered individually.

https://en.wikipedia.org/wiki/Fingerprint

Data Structures & Advanced Programming 8Williams College CSCI 136

Hash Functions

Data Structures & Advanced Programming 9Williams College CSCI 136

Hash Function
A hash function f maps keys to integers.
Hash functions is good (i.e., useful in practice) when the following properties hold:
1. The function can be evaluated quickly.
2. The range of the function is used uniformly or close to uniformly.

The values of a hash function f are often large integers and the result is taken modulo M.
The result can be viewed as a new hash function f ’ (with the same domain and a smaller range).
● Choosing M to be a prime is often helpful.
● M is often the size of array used to store the values in a hash table.

Approximately the same number of arrows enter each point.
In other words, this function f spreads out evenly across its range.

Data Structures & Advanced Programming 10Williams College CSCI 136

Applications

Data Structures & Advanced Programming 11Williams College CSCI 136

Fingerprinting as a Metaphor
Let’s focus on the following aspects of fingerprints:

● They reduce a lot of information down to a little information.
○ This information can be further reduced down to an individual number.

● This fingerprint can be obtained quickly.
○ Faster than a full DNA test.

● Two individuals with the same fingerprint, or the same fingerprint number, are probably
the same individual, but not necessarily.
○ Two fingerprints that have the same number can be checked manually.

In computer science we often have similar goals.

Data Structures & Advanced Programming 12Williams College CSCI 136

Application: Duplicate Testing
Suppose that we have a large collection of documents and we’d like to determine if any are
duplicates.

Idea: Compute a hash value for each document.
● The hash function should be fast to evaluate.
● False positives should be rare and can be checked thoroughly.
● Same idea works for images, files, etc.
● What are good/bad choices for the hash function?

Document 2Document 1

Data Structures & Advanced Programming 13Williams College CSCI 136

Application: Efficient Maps using Hashing
Suppose that we’d like to implement a map or dictionary with expected O(1)-time for the most
common operations of get, put, and remove? This will be our primary application for hashing.

Idea: Compute the hash function for the key, and use this as the index into the array.
● How big should the array be?
● What happens when keys map to the same integer?

We want to store the (key, value) pairs in an array.
We’ll use the hash of each key to determine its index.

In this example, f(BCC) = 2, so we store (key, value) for BCC in index 2.
Think of a dictionary with dynamic data

(i.e., (key, value) pairs are added and removed).

BCC
Falcons

0 1 2 3 4 5 6

Data Structures & Advanced Programming 14Williams College CSCI 136

Hash Tables

Data Structures & Advanced Programming 15Williams College CSCI 136

Hash Table
A hash table is a data structure that includes two parts:
a) An array of size M that stores values.
b) A hash function that maps values to indices {0, 1, …, M-1}. Remember that the function may be taken modulo M.

When a hash table is used to implement a map, the values are actually (key, value) pairs, and the
hash function maps keys to indices.

A collision occurs when two different values (or keys in (key, value) pairs) map to the same index.
● This will happen infrequently if the hash function’s range is significantly smaller than M,

and if the hash function is good.

A hash table with an array of length M = 7.
The hash function will map all values (or keys in (key, value) pairs) to indices in {0, 1, …, 6}.

(Or the results of the hash function will be taken modulo 7 to make the above true.)

Data Structures & Advanced Programming 16Williams College CSCI 136

Example: Phone Numbers
Suppose that we wish to maintain a collection of ~100 phone numbers.
What would be a good hash function for this type of data?

A good function would be the last two digits, or the sum of all of the digits.
A bad function would be the first two digits.

Regardless of the choice there could still be collisions.

A list of phone numbers.

Data Structures & Advanced Programming 17Williams College CSCI 136

Example: Strings
English words can be mapped to base-26 numbers in the normal way:

A L P H A B E T
0 11 14 7 0 1 4 19

This number can then be mapped to a base-10 number in the normal way:

0·267 + 11·266 + 14·265 + 7·264 + 0·263 + 1·262 + 4·261 + 19·260

This is a good hash function in many situations and for many different values of M.
● It can be applied to different string data.
● What about binary string data?

Data Structures & Advanced Programming 18Williams College CSCI 136

Resolving Collisions
There are two basic approaches to resolving collisions.

1. Chaining.
2. Open Addressing.

They have different pros and cons depending on the situation.

Data Structures & Advanced Programming 19Williams College CSCI 136

Chaining

Data Structures & Advanced Programming 20Williams College CSCI 136

0 1 2 3 4 5 6 7 8 9

∅ hash=1 ∅ ∅ hash=4 ∅ ∅ hash=7 ∅ ∅

↓ ↓

hash=1 hash=7

↓

hash=1

In chaining the entries of the array are actually references to unsorted linked lists.
In other words, the array entries are like the buckets in bucket sort.

Chaining

put: Add the new entry to the front of the appropriate linked list.
get: Travel through the appropriate linked list to find the entry.
remove: Travel through the appropriate linked list to find and delete the entry.

A hash table that uses chaining to handle collisions.

Data Structures & Advanced Programming 21Williams College CSCI 136

Open Addressing

Data Structures & Advanced Programming 22Williams College CSCI 136

0 1 2 3 4 5 6 7 8 9

hash=2 hash=4 hash=7 hash=9

hash=2 hash=2 hash=4 hash=7 hash=9

hash=2 hash=2 hash=4 hash=2 hash=7 hash=9

hash=9 hash=2 hash=2 hash=4 hash=2 hash=7 hash=9

In open addressing the next open entry of the array is used during insertions.
Depending on the order of insertions the next open entry could be after an entry with a different hash value.

Open Addressing

put: Add the new entry to the next open entry to the right (wrapping-around).
get: Start at the correct entry and proceed right until finding it or an empty entry.
remove: Start at the correct entry and proceed right to find the entry if it exists. Delete the
value and rehash the values to the right until there is an empty entry.

A sequence of insertions into a hash table that uses open addressing for collisions.
The top row shows four values in the hash table. Then successive rows show the result of put on values that hash to 2, 2, 2, and 9, respectively.

Data Structures & Advanced Programming 23Williams College CSCI 136

structure Package

Data Structures & Advanced Programming 24Williams College CSCI 136

Take a look at Hashtable.java and related files.

Data Structures & Advanced Programming 25Williams College CSCI 136

Applications

Data Structures & Advanced Programming 26Williams College CSCI 136

Applications
The three most important algorithms at Yahoo (according to Udi Manber) are:
1. Hashing.
2. Hashing.
3. Hashing.

There are several reasons for this:
● In practice the expected run-time is often the most important measurement, whereas in

theory we usually concentrate on worst-case run-time.
● Big companies often don’t mind paying for extra storage space.
● There are many different types of applications of hashing.

In some cases the application only works because the underlying hash function has a specific
property. We will see an example of this on the next slide.

Data Structures & Advanced Programming 27Williams College CSCI 136

Application: File Integrity
Suppose that we want to ensure that a particular file was downloaded correctly from the
internet.

Idea: The website provides a hash for the file, and the downloader verifies that the download
was correct by making sure that their hash of the file is the same.

For this application we need the following properties:
● The hash function should be sensitive to small changes in the file.
● Both parties use the same hash function.

Data Structures & Advanced Programming 28Williams College CSCI 136

Application: Cryptographic Hash
Suppose that we want to detect if a particular file is modified, without keep a second copy of
it.

Idea: Store a hash of the file. We can detect modifications to the file by checking its hash
value.

For this application we need the following properties:
● It should be very difficult to create a second file with the same hash value.

In other words, finding inverses should be very difficult.

Data Structures & Advanced Programming 29Williams College CSCI 136

Application: Detecting Similarity
Suppose that we want to check a large number of images for similarity.

Idea: Compute a hash value for each file. If similar images map to similar hash values, then
we can sort the hash values and check for close values.

For this application we need the following properties:
● Similar items have similar hash values.

Data Structures & Advanced Programming 30Williams College CSCI 136

Application: Substring Matching
Suppose that we want to find a substring of length k in a larger string of length n.
How long will this take using brute force?

Idea: Compute a hash value for each substring of length k.

For this application we need the following properties:
● The hash value of s1 s2 … sk should be computable quickly from the hash value of s0 s1 …

sk-1, so that it can be updated. (The hash functions for strings that we discussed does
have this property.

