CSCI136 1

e Dictionaries

LGCtu e 27 o Terminology

C o Implementation
TABLES o structure Package

Williams College Data Structures & Advanced Progra i CSCI136 2

PersonoftheYear

NETFLIX

Eddie Munster and the
Addams Family

Driver's Ed' Full Sketch - | Think You Should Leave Season 2 aka TABLES

https://www.youtube.com/watch?v=-ZBwPmla8QQ&ab_channel=ScoobaSqueeb
http://www.youtube.com/watch?v=-ZBwPmla8QQ
https://www.youtube.com/watch?v=8YDpvMYk5jA&ab_channel=NetflixIsAJoke

Williams College Data Structures & Advanced Programming
= 4 2

Dictionari
TABLES

Williams College

Data Structures & Advanced Programming CSCI136 4

Dictionaries

An English dictionary is a map from words to their definitions.
However, it also has some additional features.

values

For example, we can ask what the “next” word in a dictionary is.
This is not possible in an arbitrary map

keys
g {2
B : @ Trailblazers
=Ry

Ephs

Llamas

Falcons

A map from images to strings.
Do the images have an obvious order?

We model this in data structures by defining a dictionary to be a map with an additional property:
The keys are comparable (and hence orderable).
Note: The textbook and structure package use the term table instead of dictionary.

Another English dictionary.

Williams College Data Structures & Advanced Programming CSCI136 5

Terminology

Williams College

Data Structures & Advanced Programming

Mapping Types — dict

A mapping object maps hashable values to arbitra)
mutable objects. There is currently only one stand
dictionary. (For other containers see the built-in 1
classes, and the collections module.)

Adictionary’s keys are almost arbitrary values. Va|
hashable, that is, values containing lists, dictionari
(that are compared by value rather than by object
as keys. Numeric types used for keys obey the no
comparison: if two numbers compare equal (such
can be used interchangeably to index the same di
however, that since computers store floating-point
approximations it is usually unwise to use them ag

Dictionaries can be created by placing a comma-|
value pairs within braces, for example: {'jack'
4127} or {4098: 'jack', 4127: 'sjoerd'}
constructor.

class dict (**kwarg)
class dict (mapping, **kwarg)
class dict(iterable, **kwarg)

Sequence containers
Sequence containers implement data structures which can be accessed sequentiall
static contiguous array

(class template)

dynamic contiguous array
ste)

array (c++11)

vector

deque
forward_list (c++11)
list f’

Associative containers
Associative containers implement sorted data structures that can be quickly searc

set: collection of unique keys, sorted by keys
(ate)

map ion of key-value pairs, sorted by keys, keys are unique
(class template)

nultiset iﬁ{}ectmn ﬁ‘f‘keys, sorted by keys

of key-value pairs, sorted by keys

te)

multimap P

Unordered associative containers

Unordered associative containers implement unsorted (hashed) data structures thg

amortized, O(n) worst-case complexity).

—— collection of unique keys, hashed by keys
unordered_set (C++11) ate)

unordered_map (c++11 of key-value pairs, hashed by keys, keys
i ol)

ate
unordered_multiset (c++11) ﬁ?l\gczgon‘sz‘keys, hashed by keys

unordered_multimap (c++11) collection of key-value pairs, hashed by keys
= (class ti

ate)

java.util

Interface SortedMap<K,V>

Type Parameters:
K - the type of keys maintained by this map
V - the type of mapped values
All Superinterfaces:
Map<K,V>
All Known Subinterfaces:
ConcurrentNavigableMap<K,V>, NavigableMap<K,V>
All Known Implementing Classes:

ConcurrentSkipListMap, TreeMap

public interface SortedMap<K,V>
extends Map<K, V>

A Map that further provides a total ordering on its keys. The map is ordered acc
to the natural ordering of its keys, or by a Comparator typically provided at sol
map creation time. This order is reflected when iterating over the sorted map's

collection views (returned by the entrySet, keySet and values methods). S¢

additional operations are provided to take advantage of the ordering. (This inte!
is the map analogue of SortedSet.)

// An implementation of an OrderedDictionary.
// (c) 1998, 2001 duane a. bailey

package structure5;
limport java.util.Iterator;
[import java.util.Map.Entry;

// An implementation of an ordered dictionary. Key-value pairs are

// kept in the structure in order. To accomplish this, the keys of the

// table must be comparable.

public class Table<K extends Comparable<K>,V>

lextends AbstractMap<K,V> implements OrderedMap<K,V>

{
// An ordered structure that maintains the ComparableAssociations
// that store the key-value pairings.
protected OrderedStructure<ComparableAssociation<K,V>> data;

// Construct a new, empty table.
// @post constructs a new table
public Table()
{
data = new SplayTree<ComparableAssociation<K,V>>();
}

public Table(Table<K,V> other)
{

data = new SplayTree<ComparableAssociation<K,V>>();
Iterator<Association<K,V>> i = other.entrySet().iterator();
(i.hasNext())
{
Association<K,V> o = i.next();
put(o.getKey(),o.getValue());

Note that the “map” and “dictionary” terminology is not standard across computer science.

In Python, a dict is a mapping with hashable keys, and map applies a function to an iterable.

Hashable implies orderable, so this aligns closely with the our use of dictionary in these slides.

interface for a map with ordered keys (i.e., a dictionary here).

a map with ordered keys (i.e., a dictionary here).

In the C++ standard library, a map has ordered keys (i.e., a dictionary here), and no dictionary.
In Java's standard java.util package, Map is an interface for a map, and SortedMap is an

In the textbook and structure package, Map is an interface for a map, and Table is an interface for

Wikipedia uses associative array for map, and ordered dictionary for ordered keys (i.e., a dictionary here).

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
https://en.cppreference.com/w/cpp/header/map
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/util/SortedMap.html
https://en.wikipedia.org/wiki/Associative_array#Ordered_dictionary

Williams College Data Structures & Advanced Programming CSCI136 7

Implementation

Williams College

Implementing a Dictionary
We can utilize this additional property of the keys
when implementing a dictionary.

In fact, we can significantly improve upon the
performance of a generic map.

Since the keys are ordered, we can implement a
dictionary with any type of binary search tree
(e.g., splay tree, red-black tree, etc).

e The nodes are (key, value) pairs.

e The nodes are ordered by keys.

This approach allows us to replace the linear
run-times with logarithmic run-times.

Data Structures & Advanced Programming

CSCI136 8

A binary search tree with (key, value) pairs in each node.
The order of the nodes is based on the order of the keys.

contains | contains
get put remove
Key Value
O(log n)- O(log n)- O(log n)- O(log n)- 0(n)-
time time time time time

Worst-case run-times of various dictionary operations.
Note that these run-times assume the use of a
self-balancing binary search tree with worst-case
logarithmic run-times (e.g. red-black and not splay).

Williams College Data Structures & Advanced Programming CSCI136 9

structure Package

Williams College

Implementation of Table
In the structure package, the term table is used instead of dictionary.

Data Structures & Advanced Programming

CSCI 136 10

Besides using a binary search tree instead of a linked list, the implementation of the Table class
differs from the implementation of MapList in several ways.

e Theinterface OrderedMap is used instead of Map.

e Each (key, value) pairis a ComparableAssociation rather than an Association.

e Table extends Comparable and AbstractMap whereas MapList does not.

Williams College

Data Structures & Advanced Programming

CSCI 136 11

// An implementation of an ordered dictionary.
// kept in the structure in order.
// table must be comparable.
Ipublic class Table<K extends Comparable<K>,V>
extends AbstractMap<K,V> implements OrderedMap<K,V>
{

Key-value pairs are
To accomplish this, the keys of the

// An ordered structure that maintains the ComparableAssociations
// that store the key-value pairings.
protected OrderedStructure<ComparableAssociation<K,V>> data;

// Construct a new, empty table.
// @post constructs a new table
public Table()

{
data = new SplayTree<ComparableAssociation<K,V>>();
}
public Table(Table<K,V> other)
{
data = new SplayTree<ComparableAssociation<K,V>>();
Iterator<Association<K,V>> i = other.entrySet().iterator();
while (i.hasNext())
{
Association<K,V> o = i.next();
put(o.getKey(),o.getValue());
}
}

// A class implementing a comparable key-value pair. This class associates an
// immutable key with a mutable value. Useful for many other structures.
public class ComparableAssociation<K extends Comparable<K>,V>

extends Association<K,V>

implements Comparable<ComparableAssociation<K,V>>, Map.Entry<K,V> {

// Construct an association that can be ordered, from only a key.
// The value is set to null.
public ComparableAssociation(K key) {
this(key,null);
}

// Construct a key-value association that can be ordered.

public ComparableAssociation(K key, V value) {
super(key,value);

}

// Determine the order of two comparable associations, based on key.
// @pre other is non-null ComparableAssociation
// @post returns integer representing relation between values
// @param other The other comparable association.
// @return Value less-than equal to or greater than zero based on compariso
public int compareTo(ComparableAssociation<K,V> that)
{
return this.getKey().compareTo(that.getKey());
}

// An interface the supports a Map whose values are kept

// in increasing order. Values stored within an OrderedMap

// should implement Comparable; ie. they should have an implemented

// compareTo method.

public interface OrderedMap<K extends Comparable<K>,V> extends Map<K,V> {
}

The structure package’s implementation of Table (aka, dictionary).

