CSCI136 1

e Maps
o structure Package
LECture 26 o MapList Implementation
Maps o Better Implementations

Williams College Data Structures & Advanced Programming

Maps

Williams College Data Structures & Advanced Progra

Associations and Maps
Earlier in the course, we looked at a simple object
called an association, which has a key and a value.

In the structure package we have the following
e Thekey is not null.
e The value can be null.

There are many situations in which we want to store a

set of associations. These are often called maps.

We say that the key is mapped to the value.
e The keys must be unique in the map.
e The values do not need to be unique.

The terminology is from mathematical functions, in
which each element in the domain (i.e. the key) is

mapped to one element in the range (i.e. the value).

// A class implementing a key-value pair. This class associates an
// immutable key with a mutable value. Used in many other structures.
// Example Usage:
// Association [] classesTaken = new Association[5];
// classesTaken[@] = new Association("Barbara", new Integer(1));
public class Association<K,V> implements Map.Entry<K,V> {

// The immutable key. An arbitrary object.

protected K theKey;// the key of the key-value pair

// The mutable value. An arbitrary object.
protected V theValue;// the value of the key-value pair

// Constructs a pair from a key and value.
public Association(K key, V value) {
Assert.pre(key != null,
theKey = key;
theValue = value;

}
Association. javainthe structure package.

X Y

\{

> 0O W O

A diagram of a function or map.
The element 2 is mapped to C.
In other words, 2 is a key, and C is its value.

CSCI136 3

Williams College Data Structures & Advanced Programming
=

Maps vs Arrays

A map is a generalization of an array.

This is because an array can be viewed as follows:
e The keys are the non-negative integer indices.
e Each key is mapped to the value at that index.

For example, if array[2] = C, then we can view the array as
mapping the key 2 to the value C.

As a result, maps are also known as associative arrays.

Maps generalize arrays in several ways:

The types of keys.

The keys don't necessarily need to be comparable.
The keys may not be known in advance.

The number of keys may not be known in advance.

CSCI136 4

A|D

C

C

B

B

0 1

2

3

4

5

An array is a specific type of map.

keys values
Williams College EPhS'
Trailblazers

MCLA

Massachusetts College of Liberal Arts

., Llamas
Simon’s Rock
Bard College at Simon's Rock &
Falcons
BCC
Berkshire Community College %:
[FALCONS)

A map of Berkshire colleges to their mascots.

Williams College Data Structures & Advanced Programming CSCI136 5

structure Package

Williams College Data Structures & Advanced Programming

Exercise: What is Map in structure?

What do you think a Map should be in the structure package?
Will it be an interface, a class, or an abstract class?

Will it implement any other interfaces?

Will it extend from any other classes?

Will it have any type variables?

Think to yourself for 30 seconds.
Debate with a neighbor for 1 minute.

There is no “correct” answer.
However, you should be able to justify your answer.

CSCI136 6

Williams College Data Structures & Advanced Programming CSCI136 7

// Associations establish a link between a key and a value.

// An associative array or map is a structure that allows a disjoint

// set of keys to become associated with an arbitrary set of values.

public interface Map<K,V>

{
// @post returns the number of entries in the map
public int size();

// @post returns true iff this map does not contain any entries
public boolean isEmpty();

// ®pre k is non-null
// ®post returns true iff k is in the domain of the map
public boolean containsKey(K k);

// ®pre v is non-null

// ®Ppost returns true iff v is the target of at least one map entry;

// that is, v is in the range of the map
public boolean containsValue(V v);

// @Ppre k is a key, possibly in the map
// @post returns the value mapped to from k, or null
public V get(K k);

// ®pre k and v are non-null
// ®post inserts a mapping from k to v in the map
public V put(K k, V v);

// ®pre k is non-null
// Ppost removes any mapping from k to a value, from the mapping
public V remove(K k);

(@]

(o

// ®pre other is non-null

// ®Ppost all the mappings of other are installed in this map,
// overriding any conflicting maps

public void putAll(Map<K,V> other);

// ®Ppost removes all map entries associated with this map
public void clear();

// @post returns a set of all keys associated with this map
public Set<K> keySet();

// ®post returns a structure that contains the range of the map
public Structure<V> values();

// ®Ppost returns a set of (key-value) pairs, generated from this
public Set<Association<K,V>> entrySet();

// ®pre other is non-null
// ®post returns true iff maps this and other are entry-wise equ
public boolean equals(Object other);

// ®Ppost returns a hash code associated with this structure
public int hashCode();

Map is an abstract concept.
Also, there isn't a single most
obvious way to implement it.

Map is an interface in the structure package.
There are many methods with get, put, and remove having particular importance.

Williams College

The AbstractMap class provides default implementations for a couple of methods.
e Its putAll method runs put on each (key, value) pair from the other Map.
This saves time for other implementations of Map that extend AbstractMap.

Data Structures & Advanced Programming

public abstract class AbstractMap<K,V> implements Map<K,V>
{
VEL]
% @pre other is a valid map
% @post adds the map entries of other map into this, possibly
* replacing value
7
public void putAll(Map<K,V> other) o
1 o
Iterator<kK> i = other.keySet().iterator(); (:)
while (i.hasNext())
{
K k = i.next(); This makes sense as a
: put(k;other.get(k)}; default behavior for any Map.
}
[%%
% Compute the hashCode for elements of this map
*/
public int hashCode()
{ // This could also be added
return values().hashCode(); // to the AbstractMap class.
} public boolean isEmpty()
} {
return size() == 0;
}

CSCI136 8

Williams College

Data Structures & Advanced Programming

~/GitLohani/js/src/structure5$ grep Map *.java

[AbstractMap.java: x of different pieces of information simultaneously. Maps are sometimes
AbstractMap.java:public abstract class AbstractMap<K,V> implements Map<K,V>
AbstractMap.java: public void putAll(Map<K,V> other)

Association.java:import java.util.Map;

[Association.java:public class Association<K,V> implements Map.Entry<K,V>
ChainedHashtable.java:public class ChainedHashtable<K,V> extends AbstractMap<K,V> implements Map<K,V>, Iterable<V>
ComparableAssociation.java:import java.util.Map;

ComparableAssociation.java: , Map.Entry<kK,V>

Entry.java:import java.util.Map;

Entry.java: * An implementation of the the java.util.Map.Entry interface, Entry
Entry.java: * also implement the Map interface and have expanded functionality.
Entry.java:public class Entry<K,V> implements java.util.Map.Entry<K,V>

Entry.java: Map.Entry<?,?> otherEntry = (Map.Entry<?,?>)other;

GraphList.java: * Map associating vertex labels with vertex structures.
GraphList.java: protected Map<V,GraphListVertex<V,E>> dict; // label -> vertex
GraphListEIterator.java: public GraphListEIterator(Map<V,GraphListVertex<V,E>> dict)
GraphMatrix.java: protected Map<V,GraphMatrixVertex<V>> dict; // labels -> vertices
Hashtable.java:public class Hashtable<K,V> implements Map<K,V>, Iterable<V>
Hashtable.java: public void putAll(Map<K,V> other)

Hashtable.java: % @post returns a set of Associations associated with this Map
Hashtable.java: * @post returns a Set of keys used in this Map

Map.java: * of different pieces of information simultaneously. Maps are sometimes
ap.java: * Map dict = new {@link structure.MapBST#MapBST()};

ap.java: * dict.{@link structure.MapBST#put(Object,Object) put(word,def)};

Map.java:public interface Map<K,V>

Map.java: public void putAll(Map<K,V> other);

MapList.java:import java.util.Map.Entry;

apList.java: % of different pieces of information simultaneously. Maps are sometimes
apList.java: * Map dict = new {@link #MapList()};

MapList.java:public class MapList<K,V> implements Map<K,V>

MapList.java: public MapList()

apList.java: public MapList(Map<K,V> source)
apList.java: public void putAll(Map<K,V> other)
MapList.java: MapList<?,?> that = (MapList<?,?>)other;

OrderedMap.java: * An interface the supports a Map whose values are kept
OrderedMap.java: * in increasing order. Values stored within an OrderedMap
OrderedMap.java: * @version $Id: OrderedMap.java 35 2007-08-09 20:38:38Z bailey $
OrderedMap.java:public interface OrderedMap<K extends Comparable<K>,V> extends Map<K,V>
[Table.java:import java.util.Map.Entry;

Table.java: * {@link OrderedMap} dict = new {@link #Table()};
[Table.java:public class Table<K extends Comparable<K>,V> extends AbstractMap<K,V> implements OrderedMap<K,V>
Table.java: OrderedMap<String, String> dict = new Table<String,String>();

Map is used extensively in the structure package.
e We'll discuss OrderedMap

CSCI136 9

Williams College Data Structures & Advanced Programming CSCI 136 10

/%%
s . . s * Enter a key-value pair into the table. if the key is already
* @pre k is a key, possibly in the map % in the table, the old value is returned, and the old key-value
* @post returns the value mapped to from k, or null % pair is replaced. Otherwise null is returned. The user is cautioned
*/ * that a null value returned may indicate there was no prior key-value
public V get(K k); * pair, or —-- if null values are inserted —--- that the key was
* previously associated with a null value.
* ")
/¥x * @pre key is non-null object
* @pre k and v are non-null * @post key-value pair is added to table
* @post inserts a mapping from k to v in the map *
*/ * @param key The unique key in the table. o
public V put(K k, V v); * @param value Tl_1e (possibly null) \!alue as§ot:1ated with key.
* @return The prior value, or null if no prior value found.
*/
[Hx |_public V put(K key, V value) O

* @pre k is non-null

* @post removes any mapping from k to a value, from the mapping
*/

public V remove(K k);

If the key K is currently in the
Map, then return its current
value; otherwise, return null.

Three of the most important methods in Map.

The documentation is a little bit sparse here.
e What does the put method return?

This is clarified in another class that implements the Map interface.

Williams College Data Structures & Advanced Programming CSCI136 11

Exercise: How to implement Map?

What is the most basic implementation of a Map that you can design?

There are many methods in Map so just focus on the following:
e get(K k) // returns the value currently associated with the key K (or nul1l)
e put(K k, V v) // setskeyK's mapping to value v and returns its current value (or null)

What are their run-times in your implementation? get put
array O(n)-time O(n)-time
o e vector O(n)-time O(n)-time
[_‘ - linked list O(n)-time O(n)-time

Think to yourself for 1 minute. Run-times for a Map with n entries when implemented with

Discuss with a neighbor for 2 minutes. unsorted linear data structures that store Associations.

(The put run-times assume doubling the array when full.)

New nodes can be added to a linked list in worst-case 0(1)-time, and to an array or Vector in
amortized O(1)-time (using the double-when-full approach), but this doesn't give 0(1)-time for put.
A map stores one value per key, so put must first determine if the key is already present (and it it
returns the current value if it is). In other words, put is more like update than an add method.

Williams College Data Structures & Advanced Programming CSCI 136 12

MapList Implementation

Williams College Data Structures & Advanced Programming CSCI 136 13

MapList
One of the simplest implementations of a map uses an unsorted (singly) linked list.
e Eachnode in the list contains a single (key, value) pair.

This approach is used by the MapList class in the structure package.
e Eachnode in the list contains a single Association object.

contains | contains

I T % get put remove

Williams‘ ‘ Key Value
next

Ephs

O(n)-time | O(n)-time | O(n)-time | O(n)-time | O(n)-time

A map stored in a singly linked list as in MapList. The worst-case run-times of various operations when implementing a
Each node stores both a key and value. map using a singly linked list as in MapList.
Hence, BCC is mapped to Falcons. The number of (key, value) pairs currently in the map is n.

The run-times of these operations are Q(n)-time (i.e., at least O(n)-time) because we may need to
search every (key, value) pair in the structure. This is also true for array / Vector implementations.

Question: How can we improve these to O(log n)-time? Think about structures that we have studied.

Williams College Data Structures & Advanced Programming CSCI136 14

public class MaplList<K,V> implements Map<K,V> { // @pre v is non-null
// @Ppost returns true iff v is the target of at least one map entry;
// List for storing the entries in this map // that is, v is in the range of the map
protected List<Association<K,V>> data; public boolean containsValue(V v) {
Iterator<V> i = new Valuelterator<K,V>(data.iterator());

// Construct an empty map, based on a list while (i.hasNext())
public MapList() { {

data = new SinglylLinkedList<Association<K,V>>(); V value = i.next();
¥ if (value !'= null &&

v.equals(value)) return true;

// Construct a map with values found in source }
public MapList(Map<K,V> source) { return false;

this(); }

putAll(source);
}

// ®pre k is a key, possibly in the map

71 akumns, tha ounber. oF ‘entriss 1n the man // @Post returns the value mapped to from k, or null
o ; public V get(K k) {
public int size() {

ceburn data: sizef): int i = data.indexOf(new Association<K,V>(k,null));
) : ! if (i >= @) return data.get(i).getValue();
return null;

// @post returns true iff this map does not contains any entries ¥

public boolean isEmpty() {

return data.isEmpty(); // Gpre k and v are non-null

3 // Ppost inserts a mapping from k to v in the map
public V put(K k, V v) {
// Gpre k is non-null Association<K,V> temp = new Association<K,V>(k,v);
// @post returns true iff k is a key that is mapped to a value; Association<K,V> result = data.remove(temp);
// that is, k is in the domain of the map data.add(temp);
public boolean containsKey(K k) { if (result == null) return null;
return data.contains(new Association<K,V>(k,null)); else return result.getValue();
} }

MapList is a simple implementation of a Map in the structure package.
e dataisdeclaredasaList (an interface) and instantiated as a SinglyLinkedList.
e There is no attempt to order the data. In fact, the data might not be Comparable.

Williams College

Data Structures & Advanced Programming

// @pre k is non-null
// @post removes any mapping from k to a value, from the mapping
public V remove(K k) {

if (v == null) return null;
else return v.getValue();
}

// @pre other is non-null
// ®post all the mappings of other are installed in this map,
// overriding any conflicting maps
public void putAll(Map<K,V> other) {
Iterator<Association<K,V>> i = other.entrySet().iterator();
while (i.hasNext())
{
Association<K,V> e = i.next();
put(e.getKey(),e.getvalue());

}

// @post removes all map entries associated with this map
public void clear() {

data.clear();
}

// ®post returns a set of all keys associated with this map
public Set<K> keySet() {
Set<K> result = new SetList<K>();
Iterator<Association<K,V>> i = data.iterator();
while (i.hasNext())
{
Association<K,V> a = i.next();
result.add(a.getKey());
}
return result;

}

Association<K,V> v = data.remove(new Association<K,V>(k,null));

// @post returns a structure that contains the range of the map
public Structure<V> values() {

Structure<V> result = new SinglylLinkedList<V>();

Iterator<V> i = new ValueIterator<K,V>(data.iterator());

while (i.hasNext())

{

result.add(i.next());
}
return result;

}

// ®post returns a set of (key-value) pairs, generated from this map
public Set<Association<K,V>> entrySet() {
Set<Association<K,V>> result = new SetlList<Association<K,V>>();
Iterator<Association<K,V>> i = data.iterator();
while (i.hasNext())
{
Association<K,V> a = i.next();
result.add(a);
}
return result;

}

// ®pre other is non-null
// @®post returns true iff maps this and other are entry-wise equal
public boolean equals(Object other) {
MapList<?,?> that = (MapList<?,?>)other;
return data.equals(that.data);
}

// @post returns a hash code associated with this structure
public int hashCode() {
return data.hashCode();

}

MapList is a simple implementation of a Map in the structure package.
e dataisdeclaredasaList (an interface) and instantiated as a SinglyLinkedList.
e There is no attempt to order the data. In fact, the data might not be Comparable.

CSCI 136 15

Williams College

public abstract class AbstractMap<K,V> implements Map<K,V>
{
YET]
* @pre other is a valid map
% @post adds the map entries of other map into this, possibly
* replacing value
*/
public void putAll(Map<K,V> other)
{

Iterator<K> i = other.keySet().iterator();
while (i.hasNext())
{

K k = i.next();
put(k,other.get(k));

Data Structures & Advanced Prog

CSCI 136

// @®pre other is non-null
// @®post all the mappings of other are installed in this map,
// overriding any conflicting maps
public void putAll(Map<K,V> other) {
Iterator<Association<K,V>> 1 = other.entrySet().iterator();
while (i.hasNext())
{
Association<K,V> e = i.next();
put(e.getKey(),e.getValue());

