
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 26
● Maps

○ structure Package
○ MapList Implementation
○ Better ImplementationsMaps

Data Structures & Advanced Programming 2Williams College CSCI 136

Maps

Data Structures & Advanced Programming 3Williams College CSCI 136

Earlier in the course, we looked at a simple object
called an association, which has a key and a value.

In the structure package we have the following
● The key is not null.
● The value can be null.

A diagram of a function or map.
The element 2 is mapped to C.

In other words, 2 is a key, and C is its value.

There are many situations in which we want to store a
set of associations. These are often called maps.

We say that the key is mapped to the value.
● The keys must be unique in the map.
● The values do not need to be unique.

The terminology is from mathematical functions, in
which each element in the domain (i.e. the key) is
mapped to one element in the range (i.e. the value).

Associations and Maps

Association.java in the structure package.

Data Structures & Advanced Programming 4Williams College CSCI 136

keys values

Williams College Ephs

MCLA
Massachusetts College of Liberal Arts

Trailblazers

Simon’s Rock
Bard College at Simon’s Rock

Llamas

BCC
Berkshire Community College

Falcons

A map is a generalization of an array.
This is because an array can be viewed as follows:
● The keys are the non-negative integer indices.
● Each key is mapped to the value at that index.

For example, if array[2] = C, then we can view the array as
mapping the key 2 to the value C.

As a result, maps are also known as associative arrays.

A map of Berkshire colleges to their mascots.

Maps generalize arrays in several ways:
● The types of keys.
● The keys don’t necessarily need to be comparable.
● The keys may not be known in advance.
● The number of keys may not be known in advance.

Maps vs Arrays

An array is a specific type of map.

A D C C B B
0 1 2 3 4 5

Data Structures & Advanced Programming 5Williams College CSCI 136

structure Package

Data Structures & Advanced Programming 6Williams College CSCI 136

What do you think a Map should be in the structure package?
● Will it be an interface, a class, or an abstract class?
● Will it implement any other interfaces?
● Will it extend from any other classes?
● Will it have any type variables?

Exercise: What is Map in structure?

There is no “correct” answer.
However, you should be able to justify your answer.

Think to yourself for 30 seconds.
Debate with a neighbor for 1 minute.

Data Structures & Advanced Programming 7Williams College CSCI 136

Map is an interface in the structure package.
There are many methods with get, put, and remove having particular importance.

Map is an abstract concept.
Also, there isn’t a single most
obvious way to implement it.

Data Structures & Advanced Programming 8Williams College CSCI 136

The AbstractMap class provides default implementations for a couple of methods.
● Its putAll method runs put on each (key, value) pair from the other Map.

This saves time for other implementations of Map that extend AbstractMap.

This makes sense as a
default behavior for any Map.

Data Structures & Advanced Programming 9Williams College CSCI 136

Map is used extensively in the structure package.
● We’ll discuss OrderedMap

Data Structures & Advanced Programming 10Williams College CSCI 136

Three of the most important methods in Map.
The documentation is a little bit sparse here.
● What does the put method return?

This is clarified in another class that implements the Map interface.

If the key K is currently in the
Map, then return its current

value; otherwise, return null.

Data Structures & Advanced Programming 11Williams College CSCI 136

What is the most basic implementation of a Map that you can design?
There are many methods in Map so just focus on the following:
● get(K k) // returns the value currently associated with the key K (or null)
● put(K k, V v) // sets key K‘s mapping to value V and returns its current value (or null)

What are their run-times in your implementation?

Exercise: How to implement Map?

New nodes can be added to a linked list in worst-case O(1)-time, and to an array or Vector in
amortized O(1)-time (using the double-when-full approach), but this doesn’t give O(1)-time for put.
A map stores one value per key, so put must first determine if the key is already present (and it it
returns the current value if it is). In other words, put is more like update than an add method.

Think to yourself for 1 minute.
Discuss with a neighbor for 2 minutes.

get put

array O(n)-time O(n)-time

vector O(n)-time O(n)-time

linked list O(n)-time O(n)-time

Run-times for a Map with n entries when implemented with
unsorted linear data structures that store Associations.

(The put run-times assume doubling the array when full.)

Data Structures & Advanced Programming 12Williams College CSCI 136

MapList Implementation

Data Structures & Advanced Programming 13Williams College CSCI 136

One of the simplest implementations of a map uses an unsorted (singly) linked list.
● Each node in the list contains a single (key, value) pair.

This approach is used by the MapList class in the structure package.
● Each node in the list contains a single Association object.

The run-times of these operations are 𝝮(n)-time (i.e., at least O(n)-time) because we may need to
search every (key, value) pair in the structure. This is also true for array / Vector implementations.

Question: How can we improve these to O(log n)-time? Think about structures that we have studied.

The worst-case run-times of various operations when implementing a
map using a singly linked list as in MapList.

The number of (key, value) pairs currently in the map is n.

MapList

A map stored in a singly linked list as in MapList.
Each node stores both a key and value.
Hence, BCC is mapped to Falcons.

get put remove
contains

Key
contains
Value

O(n)-time O(n)-time O(n)-time O(n)-time O(n)-time

BCC
Falcons

next
Williams

Ephs
next …

Data Structures & Advanced Programming 14Williams College CSCI 136

MapList is a simple implementation of a Map in the structure package.
● data is declared as a List (an interface) and instantiated as a SinglyLinkedList.
● There is no attempt to order the data. In fact, the data might not be Comparable.

Data Structures & Advanced Programming 15Williams College CSCI 136

MapList is a simple implementation of a Map in the structure package.
● data is declared as a List (an interface) and instantiated as a SinglyLinkedList.
● There is no attempt to order the data. In fact, the data might not be Comparable.

Data Structures & Advanced Programming 16Williams College CSCI 136

Class Discussion: putAll and Map Iteration
It is interesting to note that MapList does not extend from AbstractMap.
As a result, it does not inherit the implementation of putAll.

Questions:
● The two implementations iterate over different sets: keySet vs entrySet.
● Which implementation is faster? Why?
● Do you have any questions or suggestions or theories regarding the structure package?

The putAll method in AbstractMap. The putAll method in MapList.

