
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 25

● Splay Trees
○ Intuition and Basic Ideas
○ Rotations and Splays
○ History
○ Iterator Issues
○ Summary

● Lab 8 — Preview (Part 1)
○ Darwin

Splay Trees

Data Structures & Advanced Programming 2Williams College CSCI 136

Splay Trees

Data Structures & Advanced Programming 3Williams College CSCI 136

Binary search trees are very common in both the theory and practice of Computer Science.
For this reason, there are many variations that are studied and used in industry.

In the last lecture, we briefly introduced several variations, including splay trees.
In this lecture, we’ll look more closely at splay trees, which are discussed in §14.5–14.6.

Splay Trees

Data Structures & Advanced Programming 4Williams College CSCI 136

Intuition and Basic Ideas

Data Structures & Advanced Programming 5Williams College CSCI 136

In many applications, there will be values that are accessed more frequently than others.
Furthermore, we likely won’t know in advance which of the values will be accessed more often,
and moreover, the distribution of accesses may change over the life of the data structure.

The intuition behind a splay tree is the following:

The most recently accessed values are more likely to be accessed again in the near future,
so we can improve performance by dynamically moving these values upward in the tree.

In other words, the data structure reacts to each find by moving the queried value up the tree.
In fact, it takes this approach to the extreme: The value is moved all the way up to the root.
Furthermore, it moves values to the root during the other operations (e.g., insert, delete).

This idea makes common sense, but it raises a number of questions and concerns.
● How can we move a value upward while maintaining the subtree condition?

We must maintain this condition otherwise the tree is not a binary search tree and the log run-time of find will be lost.
● Moving a value upward will cause other values to move downward.

This means that the run-time of some subsequent find operations will be increased.

Intuition: Rising to the Top

Data Structures & Advanced Programming 6Williams College CSCI 136

Class Discussion: (Temporal) Locality and Data Assumptions
The tendency of recent values being accessed again in the near future is known as temporal locality.
When does this occur in practice? In other words, when does the intuition behind a splay tree hold?
It will depend on the specific type of data being stored.

Let’s discuss these specific cases:
● Patient records at a hospital.
● Student records at a college.

Advanced data structures are often designed to take advantage of various types of locality
(e.g., temporal, spatial, memory, branch, equidistant).

As a computer scientist, it is important to note that different applications will have different data
assumptions, and to consider which data structures will perform better under these assumptions.

Sticker design by Iris Howley

https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Locality_of_reference
http://www.cs.williams.edu/~iris/

Data Structures & Advanced Programming 7Williams College CSCI 136

How can we move a value upward in a binary search tree while maintaining the subtree condition?
One approach is a left or right tree rotation, which makes the following modifications to the tree.
● A parent and child exchange levels.

○ The child moves up one level into its parent’s position. One of the child’s subtrees moves upward with the child.
○ The parent moves down one level into the position of its other child. One of the parent’s subtrees moves downward.

● One of the subtrees of the child becomes a subtree of the parent after the exchange.
A rotation can be specified by stating the parent node, and which direction it will be rotated.
A rotation can also be specified by stating the edge to rotate, or by stating the node to move upward.

We’ll focus on implementations that change the links of the tree, and not the individual values.
In other words, we adjust .left and .right, and not the .value property of a node.

When read left-to-right, Figure 14.4 shows a right-rotation on node y, or a rotation on edge xy, or a rotation that moves x up.
Reading right-to-left, it is a left-rotation on x, a rotation on edge xy, or move y up. Note: Rotations can also be done on non-roots.

Basic Ideas: Rotations

Data Structures & Advanced Programming 8Williams College CSCI 136

When we perform operations in a binary search tree (e.g., find, insert, delete) we traverse the
tree from the root to a specific node of interest.

In a splay tree, we repeat each traversal in reverse, going from the node of interest up to the root.
At each level, we will perform tree rotations that move the node of interest to the root.
Collectively, these rotations are referred to as a splay operation.

The definition of the splay operation will require close attention.
● Each step performs two tree rotations. (Except when the node is at level 0 or level 1.)
● The order of the two tree rotations depends on what type of grandchild the node is.

Figure 14.5 shows two cases for a single step of the splay operation (with two other cases being mirror copies).
Note: These illustrations are again focused on the root; the splay operation will often start lower in the tree.

Basic Ideas: Splay Operations

Data Structures & Advanced Programming 9Williams College CSCI 136

Rotations and Splays

Data Structures & Advanced Programming 10Williams College CSCI 136

The textbook’s illustration of tree rotations. (No assumptions are made about the sizes of A, B, C.)
In the next slide, we’ll illustrate the before and after of a right-rotation with nodes added above y.

Data Structures & Advanced Programming 11Williams College CSCI 136

D

A B
C A

B C

A right-rotation on node y. (A subsequent left-rotation on x would return the tree to its prior state.)
● Why does the subtree condition hold after the rotation? If value b is in subtree B, then x ≤ b ≤ y.
● In the structure package, this is y.rotateRight() (or rotateRight() from in y).

What are all of the references that will change? How do we properly change z’s references?

y
x

x
y

y
yx

x
zz

D

zz… …

Before the right rotation on y. After the rotation.

Data Structures & Advanced Programming 12Williams College CSCI 136

The method rotateRight() in BinaryTree.java and two helper functions.
The rotation acts on itself (i.e., the this instance of BinaryTree) so there are no arguments.
Note that left and right properties are changed and not the value property.

this

newRoot

this

newRoot

parentparent …

this

newRoot

this

newRoot

… parentparent

Data Structures & Advanced Programming 13Williams College CSCI 136

Perform a single right rotation around node d in the following binary tree.
Note: This is an exercise on rotation, not on splaying.

Exercise: Tree Rotation

Questions:
● Which subtree moves?
● Does your tree still satisfy the subtree condition?

Write your answer for 2 minutes.
Then trade notes with a neighbor for 1 minute.

h

d

b f

ℓ

e ga c

j n

m oi k

A binary search tree.
Perform a right rotation on node d.

Data Structures & Advanced Programming 14Williams College CSCI 136

Before: Right rotation on node d.

h

d

b f

ℓ

e ga c

j n

m oi k

d

b f

e ga c

h

Data Structures & Advanced Programming 15Williams College CSCI 136

 After: Right rotation on node d.

h

b

a d

ℓ

c f

j n

m oi k

e g

Data Structures & Advanced Programming 16Williams College CSCI 136

A single splay step usually moves the node x upward two levels in the tree via two rotations.
● There are four cases depending on whether x and its parent are left or right children.

This figure illustrates two of the four cases, and the other two cases mirror those above.

Data Structures & Advanced Programming 17Williams College CSCI 136

The textbook’s presentation of a single splay step, stated in terms of the node x that is moving up.
● The second bullet handles the cases where x is at level 1. These cases are often called the zig cases.
● The third bullet handles the cases where x is a left-left grandchild or a right-right grandchild.

The left-left case is in Figure 14.5 (a). There is a typo in this bullet: “left child of a left child” → “right child of a right child”.
Pay attention to the order of rotations. These are often called the zig-zig cases.

● The fourth bullet handles the cases where x is a left-right grandchild or a right-left grandchild.
The left-right case is in Figure 14.5 (b). Pay attention to the order of rotations. These are often called the zig-zag cases.

https://en.wikipedia.org/wiki/Splay_tree#Splaying

Data Structures & Advanced Programming 18Williams College CSCI 136

The method splay() in SplayTree.java.
● Unlike the tree rotate methods, this method

has an argument, with splayedNode
corresponding to node x in the previous figures.

● The while loop continues until splayedNode
is the root (i.e., when its parent is null).

● The first if statement handles the zig cases.
That is, splayedNode is at level 1 (i.e., its
grandparent is null).

● The remaining if statements handle the zig-zig
and zig-zag cases.

The isLeftChild() method is run on parent
and on splayedNode to determine which specific
zig / zig-zig / zig-zag case we are in.
The comment gives insight into the rotation order.
We’ll look more into this in a subsequent slide.

Data Structures & Advanced Programming 19Williams College CSCI 136

Each splay operation consists of a sequence of tree rotations.
Provide the rotation sequence for the following cases.
● Splay on node a.
● Splay on node c.
● Splay on node n.

Exercise: Splay Operation

Additional points:
● Describe the first sequence in three ways: parent and direction; edge; node that moves up.
● Adjust the splay tree based on the first sequence. In other words, apply the first splay.

Determine the sequences independently for 1 minute.
Work on the additional points with a neighbor for 3 minutes.

h

d

b f

ℓ

e ga c

j n

m oi k

A splay tree.

Data Structures & Advanced Programming 20Williams College CSCI 136

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.
Rotate edge bd, then edge ab, then edge ah.
Rotate b up, then a up, then a up.

Splay c: Rotate b to the left, then d to the right, then h to the right.
Splay n: Rotate h to the left, then ℓ to the left.

h

d

b f

ℓ

e ga c

j n

m oi k

Data Structures & Advanced Programming 21Williams College CSCI 136

Now let’s complete the three rotations that are involved in splaying node a.
Note that a is the smallest value in the tree, so this will be a worst-case example.
Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.

h

d

b f

ℓ

e ga c

j n

m oi k

Data Structures & Advanced Programming 22Williams College CSCI 136

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.

h

b

a d

ℓ

c f

j n

m oi k

e g

Data Structures & Advanced Programming 23Williams College CSCI 136

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.

h

a ℓ

j n

m oi k

b

d

c f

e g

Data Structures & Advanced Programming 24Williams College CSCI 136

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.

a

b

d

c f

e g

h

ℓ

j n

m oi k

Data Structures & Advanced Programming 25Williams College CSCI 136

What’s Up: Zig-Zig Cases?
Question: Why does the splay operation rotate the grandparent then the parent in zig-zig cases?
Answer: It produces more balanced trees. (Intuitively, zig-zig cases are biased in one direction,
while zig-zag cases are not.)

Below is a single zig-zig example to help illustrate this point. Think of the nodes c, e, g, i being subtrees.

h

d

b f

ℓ

e ga c

j n

m oi k

Initial tree
Move a to root

(rotate a up four times)

h

f

d g

i

b e

a c

a

f

d g

h

e

i

b

c

a

b

d

f

h

g i

c e

Splay a

Data Structures & Advanced Programming 26Williams College CSCI 136

History

Data Structures & Advanced Programming 27Williams College CSCI 136

The splay tree was introduced in a paper

Self-Adjusting Binary Search Trees

The splay operation is a small adjustment
to the move-to-root operation used in an
earlier paper called

Self-Organizing Binary Search Trees

Journal of the ACM (JACM), 1978

Brief History of Splay Trees

Journal of the ACM (JACM), 1985

This adjustment allows the tree operations
to run in amortized O(log n)-time instead of
O(n)-time.

Research in Computer Science often
advances through small insights like this.

Data Structures & Advanced Programming 28Williams College CSCI 136

Use Google Scholar (scholar.google.com) to view the articles that cite these article.

https://scholar.google.com/

Data Structures & Advanced Programming 29Williams College CSCI 136

Iterator

Data Structures & Advanced Programming 30Williams College CSCI 136

In a binary search tree, the find operation is typically read-only in the sense that it doesn’t change
the underlying data. As a result, it is safe to run find operations while iterators are active.

This is no longer true with splay trees. However, it is possible to remedy this concern with some
additional attention. The textbook’s structure package creates a special class for this task in
SplayTreeIterator.java.

Side note: Java’s handling of iteration is strange for those more familiar with other languages.
Upon reflection, one of Java’s primary design goals appears to be the following:
● Container classes are iterable and can have multiple iterators acting on them simultaneously.

This helps motivate having both iterables and iterators. For example, consider a large source of
data (the container classe) and multiple programs iterating over its contents.

Iteration Issues

Data Structures & Advanced Programming 31Williams College CSCI 136

The textbook discusses how to build a safe iterator for splay trees.

Data Structures & Advanced Programming 32Williams College CSCI 136

Analysis

Data Structures & Advanced Programming 33Williams College CSCI 136

Splay trees perform very well when working with “normal” data.
A precise analysis is complicated, since we need to provide a model of temporal locality.
In fact, open problems still remain in terms of the analysis of this data structure.

On the other hand, splay trees tend not to perform well when the values are accessed randomly.
Similarly, splay trees have better amortized or expected run-times than worst-case run-times.

Splay trees also have another practical benefit. They are able to “fix” degenerate trees that result
from inserting values in increasing (or decreasing) order, which is a common case in practice.

On the other hand, splay trees have one disadvantage in practice.
● The run-times of each find, insert, delete is doubled due to the second traversal.

(Each rotation takes constant time, but we perform one at each level going back up).

Analysis: Practical vs Theoretical

Data Structures & Advanced Programming 34Williams College CSCI 136

Summary

Data Structures & Advanced Programming 35Williams College CSCI 136

PROS

● Not too difficult to implement.
● Improves performance on the worst-case trees.
● Improves performance when the insertions are

done in increasing or decreasing order, which is
common in practice.

● Works well when the data is not random,
especially if it has temporal locality.

● Interesting from educational perspective.
○ Illustrates tree operations.
○ Illustrates analysis issues.

CONS

● No guarantee of O(log n) worst-case performance.
● Makes every operation 2x slower.
● Difficult to analyze precisely.
● Doesn’t work well with random data and accesses.
● Removes the read-only property of find.

This leads to more challenging iteration.

Data Structures & Advanced Programming 36Williams College CSCI 136

Lab 8 — Preview
(Part 1)

Data Structures & Advanced Programming 37Williams College CSCI 136

The Darwin lab.
● Game board is illustrated above with Rovers and Flytraps.
● The (genetic) code for the Flytrap species is shown above.
● There will be a contest after Thanksgiving!

