CSCI136 1

Williams College

Lecture 25

Splay Trees

e Splay Trees

O

O

O

O

O

Intuition and Basic Ideas
Rotations and Splays
History

lterator Issues

Summary

e Lab 8 — Preview (Part 1)

O

Darwin

Williams College Data Structures & Advanced Programming CSCI136 2

Splay Trees

Williams College

Splay Trees

Binary search trees are very common in both the theory and practice of Computer Science.
For this reason, there are many variations that are studied and used in industry.

Data Structures & Advanced Programming

CSCI136 3

In the last lecture, we briefly introduced several variations, including splay trees.
In this lecture, we'll look more closely at splay trees, which are discussed in §14.5-14.6.

Williams College Data Structures & Advanced Programming CSCI 136 4

Intuition and Basic Ideas

Williams College Data Structures & Advanced Programming CSCI136 5

Intuition: Rising to the Top

In many applications, there will be values that are accessed more frequently than others.
Furthermore, we likely won't know in advance which of the values will be accessed more often,
and moreover, the distribution of accesses may change over the life of the data structure.

The intuition behind a splay tree is the following:

The most recently accessed values are more likely to be accessed again in the near future,
so we can improve performance by dynamically moving these values upward in the tree.

In other words, the data structure reacts to each £ind by moving the queried value up the tree.
In fact, it takes this approach to the extreme: The value is moved all the way up to the root.
Furthermore, it moves values to the root during the other operations (e.g., insert, delete).

This idea makes common sense, but it raises a number of questions and concerns.
e How can we move a value upward while maintaining the subtree condition?
We must maintain this condition otherwise the tree is not a binary search tree and the log run-time of £ind will be lost.

e Moving a value upward will cause other values to move downward.
This means that the run-time of some subsequent £ind operations will be increased.

Williams College Data Structures & Advanced Programming CSCI136 6

Class Discussion: (Temporal) Locality and Data Assumptions

The tendency of recent values being accessed again in the near future is known as temporal locality.
When does this occur in practice? In other words, when does the intuition behind a splay tree hold?
It will depend on the specific type of data being stored.

Let's discuss these specific cases:
e Patient records at a hospital.
e Student records at a college.

Sticker desighrby Iris Howley
Advanced data structures are often designed to take advantage of various types of |ocality
(e.g., temporal, spatial, memory, branch, equidistant).

As a computer scientist, it is important to note that different applications will have different data
assumptions, and to consider which data structures will perform better under these assumptions.

https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Locality_of_reference
http://www.cs.williams.edu/~iris/

Williams College

Data Structures & Advanced Programming

Basic Ideas: Rotations

How can we move a value upward in a binary search tree while maintaining the subtree condition?

One approach is a left or right tree rotation, which makes the following modifications to the tree.
e A parent and child exchange levels.

o The child moves up one level into its parent’s position. One of the child’s subtrees moves upward with the child.
The parent moves down one level into the position of its other child. One of the parent’s subtrees moves downward.

One of the subtrees of the child becomes a subtree of the parent after the exchange.

A rotation can be specified by stating the parent node, and which direction it will be rotated.
A rotation can also be specified by stating the edge to rotate, or by stating the node to move upward.

¥

o
®

Right rotation
())
[NE e B

When read left-to-right, Figure 14.4 shows a right-rotation on node y, or a rotation on edge xy, or a rotation that moves x up.
Reading right-to-left, it is a left-rotation on x, a rotation on edge xy, or move y up. Note: Rotations can also be done on non-roots.

We'll focus on implementations that change the links of the tree, and not the individual values.
In other words, we adjust . 1eft and . right, and not the . value property of a node.

X Yy

CSCI136 7

Williams College Data Structures & Advanced Programming CSCI136 8

Basic Ideas: Splay Operations

When we perform operations in a binary search tree (e.g., find, insert, delete) we traverse the
tree from the root to a specific node of interest.

In a splay tree, we repeat each traversal in reverse, going from the node of interest up to the root.
At each level, we will perform tree rotations that move the node of interest to the root.
Collectively, these rotations are referred to as a splay operation.

Figure 14.5 shows two cases for a single step of the splay operation (with two other cases being mirror copies).
Note: These illustrations are again focused on the root; the splay operation will often start lower in the tree.

The definition of the splay operation will require close attention.
e Each step performs two tree rotations. (Except when the node is at level 0 or level 1.)
e The order of the two tree rotations depends on what type of grandchild the node is.

Williams College Data Structures & Advanced Programming CSCI136 9

Rotations and Splays

CSCI 136 10

Right rotation

Left rotation

\/

Figure 14.4 The relation between rotated subtrees.

The textbook's illustration of tree rotations. (No assumptions are made about the sizes of A, B, C.)
In the next slide, we'll illustrate the before and after of a right-rotation with nodes added above y.

CSCI 136 11

=4

=]

a

L | —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— -
o

V)

Before the right rotation on y. After the rotation.

A right-rotation on node y. (A subsequent left-rotation on x would return the tree to its prior state.)
e Why does the subtree condition hold after the rotation? If value b is in subtree B,thenx<b < y.

e Inthe structure package, thisis y.rotateRight() (or rotateRight() frominy).
What are all of the references that will change? How do we properly change z's references?

Williams

College

Data Structures & Advanced Programming

CSCI 136 12

* Method to perform a right rotation of tree about this node % Update the right subtree of this node. Parent of the right subtree
* Node must have a left child. Relation between left child and node * is updated consistently. Existing subtree is detached
* are reversed *
* <
* @pre This node has a left subtree : @post SeEs lef: subt;?eh:o.:ethghtll
* @post Rotates local portion of tree so left child is root P Tesparents-newnig Zipynotenu
*/
protected void rotateRight() % @param newRight A reference to the new right subtree of this node
{ */
BinaryTree<E> parent = parent(); public void setRight(BinaryTree<E> newRight)
BinaryTree<E> newRoot = left(); {
boolean wasChild = pafept != null; . if (isEmpty()) return;
boolean wasLeftChild = isLeftChild(); if (right != null & right.parent() == this) right.setParent(null);
// hook in new root (sets newRoot's parent, as well) r}ght = newRight; Shs o
setLeft(newRoot.right()); y right.setParent(this);
// puts pivot below it (sets this's parent, as well)
newRoot.setRight(this);
if (wasChild) {
if (wasLeftChild) parent.setLeft(newRoot);
else parent.setRight(newRoot);
}
} * Determine if this node 1s a left child
*
* @post Returns true if this is a left child of parent
*
* @return True iff this node is a left child of parent
*/
public boolean isLeftChild()
{
if (parent() == null) return false;
return this == parent().left();
}

The method rotateRight () in BinaryTree. java and two helper functions.
The rotation acts on itself (i.e., the this instance of BinaryTree) so there are no arguments.
Note that 1eft and right properties are changed and not the value property.

Williams College Data Structures & Advanced Programming CSCI 136 13

Exercise: Tree Rotation

Perform a single right rotation around node d in the following binary tree.
Note: This is an exercise on rotation, not on splaying.

Write your answer for 2 minutes. A binary search tree.
Then trade notes with a neighbor for 1 minute. Perform a right rotation on node d.

Questions:
e Which subtree moves?
e Does your tree still satisfy the subtree condition?

Williams College Data Structures & Advanced Programming CSCI 136 14

Before: Right rotation on node d.

Williams College Data Structures & Advanced Programming CSCI 136 15

After: Right rotation on node d. e q

Williams College Data Structures & Advanced Programming CSCI 136 16

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

A single splay step usually moves the node x upward two levels in the tree via two rotations.
e There are four cases depending on whether x and its parent are left or right children.
This figure illustrates two of the four cases, and the other two cases mirror those above.

Williams College Data Structures & Advanced Programming CSCI 136 17

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

e If z is the root, we are done.

e If z is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. becomes the root and we are done.

e If z is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if z is a left child
of a left child. After double rotation, continue splay of tree at z with this
new tree.

e If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if z is the left
child of a right child. Again, continue the splay at z in the new tree.

The textbook’s presentation of a single splay step, stated in terms of the node x that is moving up.
e The second bullet handles the cases where x is at level 1. These cases are often called the zig cases.
e The third bullet handles the cases where x is a left-left grandchild or a right-right grandchild.

The left-left case is in Figure 14.5 (a). There is a typo in this bullet: “left child of a left child” — “right child of a right child".
Pay attention to the order of rotations. These are often called the zig-zig cases.

e The fourth bullet handles the cases where x is a left-right grandchild or a right-left grandchild.

The left-right case is in Figure 14.5 (b). Pay attention to the order of rotations. These are often called the zig-zag cases.

https://en.wikipedia.org/wiki/Splay_tree#Splaying

Williams College

Data Structures & Advanced Programming CSCI 136 18

protected void splay(BinaryTree<E> splayedNode) . .
¢ BinaryTree<E> parent,grandParent; The methOd SplaY() In SplayTree ' J ava.
vzhile ((parent = splayedNode.parent()) != null) o Unllke the tl'ee rotate mEthOdS, thIS mEthOd
if ((grandParent = parent.parent()) == null) haS an argumen‘t’ W|'th SplayedNode
} S e e corresponding to node x in the previous figures.
clse e The while loop continues until splayedNode
if (;g)arent.isLeftChi?d()) ' |S the I'OOt (l.e., When |tS parent IS l’lU.ll)
¢ ‘/‘I’lyt"“"thL:tC“i"i:’ . e The first i f statement handles the zig cases.
el e e e That is, splayedNode is at level 1 (i.e., its
} pazont.otateRight()y | grandparent is null).
clse e The remaining if statements handle the zig-zig
} randparent . rotateRight(); and zig-zag cases.
glse The isLeftChild() method is run on parent
B and on splayedNode to determine which specific
, Perentrotaetertl); zig / zig-zig / zig-zag case we are in.
else
{
parent rotateRignt(); The comment gives insight into the rotation order.
grim We'll look more into this in a subsequent slide.
}
}

Williams College Data Structures & Advanced Programming CSCI136 19

Exercise: Splay Operation

Each splay operation consists of a sequence of tree rotations.
Provide the rotation sequence for the following cases.
e Splay on node a.
e Splay on node c.
e Splay on node n.

Determine the sequences independently for 1 minute. A splay tree.
Work on the additional points with a neighbor for 3 minutes.

Additional points:
e Describe the first sequence in three ways: parent and direction; edge; node that moves up.
e Adjust the splay tree based on the first sequence. In other words, apply the first splay.

CSCI 136 20

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.
Rotate edge bd, then edge ab, then edge ah.
Rotate b up, then a up, then a up.

Splay c: Rotate b to the left, then d to the right, then h to the right.

Splay n: Rotate h to the left, then ¢ to the left.

CSCI 136 21

Now let's complete the three rotations that are involved in splaying node a.
Note that a is the smallest value in the tree, so this will be a worst-case example.

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.

Williams College Data Structures & Advanced Programming CSCI 136 22

Splay a: Rotate d to the right, then rotate b to the right, then rotate h to the right.

Williams College Data Structures & Advanced Programming CSCI 136 23

Splay a: Rotate d to the right, then ro to t t, then rotate h to the right.

Williams College Data Structures & Advanced Programming CSCI 136 24

Splay a: Rotate d to the right, then rotate b to\ € /t, {\ 9 Aate h to the right.

Williams College Data Structures & Advanced Programming CSCI136 25
What's Up: Zig-Zig Cases?

Question: Why does the splay operation rotate the grandparent then the parent in zig-zig cases?
Answer: It produces more balanced trees. (Intuitively, zig-zig cases are biased in one direction,
while zig-zag cases are not.)

Below is a single zig-zig example to help illustrate this point. Think of the nodes ¢, e, g, i being subtrees.

(h) (a) (a)
(£) (1) h) (£)

e ©6 6 O (b h)
006 © 6 o 66
© 0 (b (e (c (e

- Move a to root
Initial tree @ (rotate a up four times) Splay a

Williams College Data Structures & Advanced Programming CSCI 136 26

History

Williams College Data Structures & Advanced Programming) CSCI 136 27
" T _.\:j v ““‘v‘h\’ ~r— M (’. " = g . - - X R — .4,

The splay tree was introduced 1n a paper

“ DANIEL DOMINIC SLEATOR AND ROBERT ENDRE TARJAN

Self-Adjusting Binary Search Trees B Rty

Abstract. The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The
| binary search tree is a data structure for representing tables and lists so that accessing, inserting, and
5 Q) 3 1 deleting items is easy. On an n#-node splay tree, all the standard search tree operations have an amortized
\ time bound of O(log n) per operation, where by “amortized time” is meant the time per operation
The Sp lay Op e rat lo n]_ S a S | I l al]_ a d] u St l l I ent averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees
- when total running time is the measure of interest. In addition, for sufficiently long access sequences,
4 splay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency of
*) | splay trees comes not from an explicit structural constraint, as with balanced trees, but from applying a
to the move-to-root oper ation used in an , Smple retructuring heurstic,called splaying, wheneve th re i accessd. Extensionsofspaying give
AR simplified forms of two other data structures: lexicographic or multidimensional search trees and link/
cut trees.

.
e arll er a er C 11 d Categories and Subject Descriptors: E.1 [Data]: Data Structures—trees; F.2.2 [Analysis of Algorithms
p p a e | and Problem Complexity}: Nonnumerical Algorithms and Problems—sorting and searching
| . General Terms: Algorithms, Theory

Additional Key Words and Phrases: Amortized complexity, balanced trees, multidimensional searching,
network optimization, self-organizing data structures

Self-Organizing Binary Search Trees

) Y PO % S T E— T p—
o/, ,fxv, i\ o) ",;f‘(n-, WAty e ’ P . i

This adjustment allows the tree operations
to run in amortized Olog n)-time instead of

Z By ¥ ABSTRACT Heunstics are considered which attempt to mamtain a binary search tree in a near optimal form,

n ay tl I I l e o AN assuming that elements are requested with fixed, but unknown, independent probabilities. A “move to root”
heuristic 1s shown to yield an expected search time within a constant factor of that of an optimal stauc binary

search tree. On the other hand, a closely related “simple exchange™ technique is shown not to have this property.

The rate of convergence of the move to root heuristic is discussed Also considered 1s the more general case in

Re S e arch in C O p uter Scienc e Often which elements not i the tree may have nonzero probability of being requested.

KEY WORDS AND PHRASES" binary search tree, adaptive structure, average behavior

Wl CRCATEGORIES: 3.74,5.25,5.6

Journal of the ACM (JACM), 1978

advances through small insights like this.

E— - — — B B—

Williams College

Data Structures & Advanced Programming

CSCI 136 28

Google Scholar

® Articles

Any time

Since 2021
Since 2020
Since 2017
Custom range...

self-adjusting binary search trees

About 4,440 results (0.10 sec

Self-adjusting binary search trees
DD Sleator, RE Tarjan - Journal of the ACM (JACM), 1985 - dl.acm.org

The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The
binary search tree is a data structure for representing tables and lists so that accessing,

inserting, and deleting items is easy. On an n-node splay tree, all the standard search tree ...

Y¢ Save 99 Cite Cited by 1704 Related articles All 42 versions Web of Science: 574

Google Scholar

& Articles

Any time

Since 2021
Since 2020
Since 2017
Custom range...

self organizing search trees

ts (0.41 sec)

poF] Self-organizing binary search trees
B Allen, | Munro - Journal of the ACM (JACM), 1978 - dl.acm.org

Heurlsttcs are considered which attempt to maintain a binary search tree in a near optimal
form, assuming that elements are requested with fixed, but unknown, independent
probabilities. A" move to root™ heuristic is shown to yield an expected search time within a ...

Y& Save P9 Cite Cited by 159 Related articles All 5 versions Web of Science: 64

Use Google Scholar (scholar.google.com) to view the articles that cite these article.

https://scholar.google.com/

Williams College Data Structures & Advanced Programming CSCI 136 29

lterator

Williams College dvanced Programming CSCI 136 30

Iteration Issues

In a binary search tree, the £ind operation is typically read-only in the sense that it doesn't change
the underlying data. As aresult, it is safe to run £ind operations while iterators are active.

This is no longer true with splay trees. However, it is possible to remedy this concern with some
additional attention. The textbook's structure package creates a special class for this task in
SplayTreelterator. java.

Side note: Java's handling of iteration is strange for those more familiar with other languages.
Upon reflection, one of Java's primary design goals appears to be the following:
e Container classes are iterable and can have multiple iterators acting on them simultaneously.

This helps motivate having both iterables and iterators. For example, consider a large source of
data (the container classe) and multiple programs iterating over its contents.

Williams College Data Structures & Advanced Programming CSCI 136 31

/’\ - W Stack

root

R

current

Figure 14.6 A splay tree iterator, the tree it references, and the contents of the virtual
stack driving the iterator.

The textbook discusses how to build a safe iterator for splay trees.

Williams College Data Structures & Advanced Programming CSCI 136 32

Analysis

Williams College Data Structures & Advanced Programming CSCI 136 33

Analysis: Practical vs Theoretical

Splay trees perform very well when working with “normal” data.
A precise analysis is complicated, since we need to provide a model of temporal locality.

In fact, open problems still remain in terms of the analysis of this data structure.
On the other hand, splay trees tend not to perform well when the values are accessed randomly.
Similarly, splay trees have better amortized or expected run-times than worst-case run-times.

Splay trees also have another practical benefit. They are able to “fix" degenerate trees that result
from inserting values in increasing (or decreasing) order, which is a common case in practice.

On the other hand, splay trees have one disadvantage in practice.
e The run-times of each £ind, insert, delete is doubled due to the second traversal.
(Each rotation takes constant time, but we perform one at each level going back up).

Williams College Data Structures & Advanced Programming CSCI 136 34

Summary

Williams College

Data Structures & Advanced Programming

PROS

Not too difficult to implement.

Improves performance on the worst-case trees.
Improves performance when the insertions are
done in increasing or decreasing order, which is

common in practice.
Works well when the data is not random,
especially if it has temporal locality.
Interesting from educational perspective.
o lllustrates tree operations.
o lllustrates analysis issues.

4

CONS

No guarantee of O(log n) worst-case performance.
Makes every operation 2x slower.

Difficult to analyze precisely.

Doesn't work well with random data and accesses.
Removes the read-only property of £ind.

This leads to more challenging iteration.

4

CSCI 136 35

Williams College Data Structures & Advanced Programming CSCI 136 36

Lab 8 — Preview
(Part 1)

Williams College

Data Structures & Advanced Programming

CSCI 136 37

(&) F] | Step \ Instruction \ Comment
1 ifenemy 4 | If there is an enemy ahead, go to step 4

N 2 left Turn left

N3 L 3 go 1 Go back to step 1
E b 4 infect Infect the adjacent creature
(») 5 go 1 Go back to step 1
a &
<f]

The Darwin lab.
Game board is illustrated above with Rovers and Flytraps.
The (genetic) code for the Flytrap species is shown above.

There will be a contest after Thanksgiving!

