
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 24
● Binary Search Trees

○ Efficiency
● Advanced Tree Structures

○ Splay Trees
○ Red-Black Trees
○ Skew Heaps

Advanced Tree Structures

Data Structures & Advanced Programming 2Williams College CSCI 136

Binary Search Trees
continued …

Data Structures & Advanced Programming 3Williams College CSCI 136

Efficiency

Data Structures & Advanced Programming 4Williams College CSCI 136

Discussion on Efficiency
The operations find / insert / delete will take O(h)-time where h is the height of the tree.

Question: How does h relate to the number of values in the tree n?
Answer: In the worst case h = n-1. Thus, these operations take O(n)-time in the worst-case.
In the best case h = log(n).

Question: What is the "expected" height of a binary search tree?
Answer: O(log n). Thus, the operations take O(log n))-time in an expected sense. (Recall Quick Sort.)

Why is the expected height the same as the best case height, instead of the worst-case height?
Intuitively, it is because there are more ways in which the better cases can be created.
We’ll investigate this in the next activity.

30

20

10

10

20

30

10

20

30

30

10

20

10

30

20

Data Structures & Advanced Programming 5Williams College CSCI 136

We will consider binary search trees with values 1, 2, …, n where n = 2m - 1. This n simplifies the activity.
The total number of possible binary trees with n nodes is the nth Catalan number C(n) (seen earlier).
● How many binary trees have the worst-case height of h = n - 1?
● How many binary trees have the best-case height of h = ⌊log(n)⌋ = m - 1?

Activity: insert Sequences

Oh No! The above answers imply that there are more worst-case trees than best-case trees.
Now consider how a binary search tree is created by a sequence of n calls to insert.
There are n! possible sequences. For example, insert(1), insert(2), … is one sequence.
● How many sequences create one of the worst-case trees with height h = n - 1?
● How many sequences create the best-case tree with height h = m - 1?

In general, the majority of sequences create binary search trees that have height closer to m than n.

Discuss with a neighbor for 2 minutes.
Then again for 2 more minutes.

Data Structures & Advanced Programming 6Williams College CSCI 136

Advanced Tree Structures

Data Structures & Advanced Programming 7Williams College CSCI 136

These are the simplest structures of their respective types.
● We can improve the practical performance of a BST using Splay Trees (§14.5–14.6).
● We can obtain O(log n)-time guarantees for BSTs using Red-Black Trees (§14.7).
● We can efficiently merge two heaps using Skew Heaps (§13.4.3).

More generally, it is important to view this course as an introduction to data structures.

Binary heap stored in an array.
Binary search tree.

Improving Upon the Tree Data Structures

1 4 7 8 5 9 11

1

4 7

8 5 9 11

8

3

1 6 14

10

134 7

We have now seen two specific ways to store values within a binary tree:
● A binary search tree’s values are ≤ in the left subtree and ≥ in the right subtree.
● A binary heap’s values are ≥ in the children, and it has a fixed shape.

Data Structures & Advanced Programming 8Williams College CSCI 136

Splay Trees

Data Structures & Advanced Programming 9Williams College CSCI 136

A splay tree rearranges its nodes after each insert
or delete using a splay operation, which involves a
small number of tree rotations.

It improves run-times in practice, but it does not
provide O(log n)-time guarantees.

The splay operation involves rotating the binary tree.
The goal is to keep the tree as balanced as possible.

This idea of optimizing the links within a structure
comes up in other data structures.

For example, path compression is a common feature
of disjoint-set (or “union-find”) data structures,
which you may see in CSCI 256.

Splay Trees (§14.5–14.6)

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

Data Structures & Advanced Programming 10Williams College CSCI 136

Red-Black Trees

Data Structures & Advanced Programming 11Williams College CSCI 136

A self-balancing binary search tree performs additional work to ensure that it always has guaranteed
logarithmic height in the number of nodes.

One example is a red-black tree, named for having two different types of nodes. It maintains several
conditions, including this property: every path from a node to a leaf has the same # of black nodes.
● This requires a number of delicate cases involving some constant-time tree rearrangements.
● Difficult to implement correctly.

Other self-balancing trees include splay trees, AVL trees, B trees, and more.
Related: A 2-3 tree has both regular nodes and big nodes with 2 values and 3 children.

Red-Black Trees (§14.7)

In this Red-Black Tree every path from the root to a leaf goes through exactly 3 black nodes (including null nodes).
B : D

A C E

big
node

https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Data Structures & Advanced Programming 12Williams College CSCI 136

Skew Trees

Data Structures & Advanced Programming 13Williams College CSCI 136

In some situations it can be helpful to merge two
binary heaps. In other words, we want to create a
new heap that has the union of values in two heaps.

The implementation that we studied does not provide
any logarithmic benefits when merging. It takes
O(n)-time, where n is the sum of the nodes.

merge cases in the
structure package’s SkewHeap.

A skew heap allows for merging in O(log n)-time.
● Also see leftist tree for O(log n)-time merging.

Given the efficiency of this operation, it makes sense to
reformulate the other operations in terms of it.
● An insert (add) runs merge with the heap and

a new singleton heap containing the new value.
● A delete-min (remove) deletes the root, and

then runs merge on the two subheaps.

Skew Heaps (§13.4.3)

https://en.wikipedia.org/wiki/Leftist_tree

