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Lab 7 — Preview
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The lab is focused on the two-player game hexapawn (or hex-a-pawn) created by Martin Gardner.
● Create a “game tree” of all of the possible moves.  The nodes are board configurations and 

whose turn it is.  The root is the initial configuration on white’s turn.  The children of a node are 
the configurations that can be reached by the current player making one move. The game ends 
at each leaf node, where the current payer cannot make a move.

● To “learn” from a loss, a (computer) player can prune its own version of the game tree, so that 
it never makes the same last move (which it knows leads to a loss).

https://en.wikipedia.org/wiki/Martin_Gardner
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Binary Search Trees 
continued … 
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Last class, we discussed how to implement find (contains) and insert (add).
Now try your best to reproduce these methods.
1. Write recursive pseudocode for find: determine if a target value t is in a binary search tree.
2. [Time permitting] Write recursive pseudocode for insert: add value t to a binary search tree.

In this part, you can assume that value t is not already in the binary search tree.

Exercise: find and insert

Notes:
● If node is a node in the tree, then you can access its value and children as follows:

node.value,  node.left,  node.right 
● What are your base cases?
● Remember to make a new node when inserting.

Write your answer for 3 minutes.
Then trade notes with a neighbor for 2 minutes.
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Pseudocode for find and insert. 
● insert’s first case is only for empty trees.

In this case, the tree’s root node is being created.

Remember that there is no single “correct” pseudocode style. 
● Some may prefer to use true instead of yes (as in previous slides).
● Some may prefer to use null instead of empty (as in previous slides).
● Some may prefer to use the argument name node instead of root (as in previous slides).
● Some may prefer to use .left() or left() instead of .left.

function find(node, target)
    if node is null then
        return false

    if node.value == target then
        return true

    if target < node.value then
        return find(node.left, target)
    else
        return find(node.right, target)

function insert(node, value)
    if node == null then
        node = new node(value)
        return

    if value < node.value then
        if node.left is null then
             node.left = new node(value)
        else
             insert(node.left, value)
    else
        if node.right == null then
             node.right = new node(value)
        else
             insert(node.right, value)
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Operations
(Part 2)
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How can we delete a value from a binary search tree?
● Are there any easy cases?
● Can you convert from a hard case to an easy case?

Recall our operations on binary heaps.

Question: Delete

Think about the quality of your approach.
● What is its run-time?  Let n be the number of values currently in the structure.
● Would it cause subsequent operations (find, insert, or delete) to take longer?

We’ll aim for self-contained pseudocode that is similar to the textbook’s approach.

Think about this for 2 minutes.
Then discuss it with your neighbor for 2 minutes.
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Binary Search Tree: Delete (Easy Cases) Let’s focus on two easy cases:
1. Deleting a leaf.

In this case, we just remove it.
2. Deleting a node with one child.

In this case, we can move the 
subtree rooted at the child into the 
deleted node’s position.

After these deletions, the subtree 
conditions will still hold at each node.
Notes: 
● We could identify more easy cases.  

We’ll focus on these because they 
help us solve the remaining cases.

● Are these really different cases?  
We can use a combined easy case: 
A node has at most one child.
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Binary Search Tree: Delete (Easy Cases)
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Let’s focus on two easy cases:
1. Deleting a leaf.

In this case, we just remove it.
2. Deleting a node with one child.

In this case, we can move the 
subtree rooted at the child into the 
deleted node’s position.

After these deletions, the subtree 
conditions will still hold at each node.
Notes: 
● We could identify more easy cases.  

We’ll focus on these because they 
help us solve the remaining cases.

● Are these really different cases?  
We can use a combined easy case: 
A node has at most one child.
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What if we swap v and s?
● The subtree condition will only be 

violated by v and s.  Why?
● The value v is now either (a) in a leaf, or 

(b) in a node that only has one child 
(since it cannot have a right child).

Therefore, after the swap, it is an easy case 
to delete the node containing v.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node 
with two children.  Let the node’s value be v.
Due to its left child, v isn’t the smallest value.  
The next smallest value s (i.e., largest value s with 
s < v) is the rightmost descendant of its left 
child (i.e., go left ocne, then right as much as possible).
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What if we swap v and s?
● The subtree condition will only be 

violated by v and s.  Why?
● The value v is now either (a) in a leaf, or 

(b) in a node that only has one child 
(since it cannot have a right child).

Therefore, after the swap, it is an easy case 
to delete the node containing v.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node 
with two children.  Let the node’s value be v.
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What if we swap v and s?
● The subtree condition will only be 

violated by v and s.  Why?
● The value v is now either (a) in a leaf, or 

(b) in a node that only has one child 
(since it cannot have a right child).

Therefore, after the swap, it is an easy case 
to delete the node containing v.
Delete also works with the next largest value (i.e., smallest 
ℓ with ℓ > v) in the leftmost descendant of its right child.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node 
with two children.  Let the node’s value be v.
Due to its left child, v isn’t the smallest value.  
The next smallest value s (i.e., largest value s with 
s < v) is the rightmost descendant of its left 
child (i.e., go left once, then right as much as possible).
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What if we swap v and s?
● The subtree condition will only be 

violated by v and s.  Why?
● The value v is now either (a) in a leaf, or 

(b) in a node that only has one child 
(since it cannot have a right child).

Therefore, after the swap, it is an easy case 
to delete the node containing v.
Delete also works with the next largest value (i.e., smallest 
ℓ with ℓ > v) in the leftmost descendant of its right child.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node 
with two children.  Let the node’s value be v.
Due to its left child, v isn’t the smallest value.  
The next smallest value s (i.e., largest value s with 
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What if we swap v and s?
● The subtree condition will only be 

violated by v and s.  Why?
● The value v is now either (a) in a leaf, or 

(b) in a node that only has one child 
(since it cannot have a right child).

Therefore, after the swap, it is an easy case 
to delete the node containing v.
Delete also works with the next largest value (i.e., smallest 
ℓ with ℓ > v) in the leftmost descendant of its right child.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node 
with two children.  Let the node’s value be v.
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Binary Search Tree: delete
This pseudocode implements the delete operation recursively and returns if it was successful.
function delete(node, target)
  // Base case: Target not in tree.
  if node == null then return false

  // The target is not in this node.
  if node.value < target then
    return delete(node.left, target)
  else if node.value > target then
    return delete(node.right, target)

  // Determine if node is a child.
  isLeft = false
  isRight = false
  parent = node.parent
  if parent ≠ null then
    isLeft  = (parent.left  == node)
    isRight = (parent.right == node)  

This approach uses .parent references.
The deletion may require the data structure’s root reference to be updated (not shown).

// Combined easy case: At most one child.
if node.left == null then
  if isLeft then parent.left = node.right
  if isRight then parent.right = node.right
  return true
else if node.right == null then
  if isLeft then parent.left = node.left
  if isRight then parent.right = node.left
  return true

// Hard case: Find next smallest s.
s = node.left
while s.right == null
    s = s.right

// Then swap values and finish recursively.
node.value = s.value
s.value = target
return delete(s, target)

Alternatively, we could 
find the next largest ℓ. 
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structure Package



Data Structures & Advanced Programming 19Williams College CSCI 136

The textbook’s approach for delete (remove) has some similarities and differences:
● Figure 14.2 (a)–(b) are the combined easy case: A node has at most one child.

Figure 14.2 (c) is an additional easy case that is needed using this approach.
● remove calls protected methods including locate (which returns a node to remove) and 

removeTop (which returns the modified subtree); remove fixes the parent references.

(a) and (b) are the 
combined easy case.

The hard case.
(c) is another easy 

case required by this 
approach
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remove and its helper functions in the structure5 package.
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remove and its helper functions in the structure5 package.
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remove and its helper functions in the structure5 package.
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Applications
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Binary search trees have many applications:
● Tree sorting.  Insert all of the values, then perform an in-order traversal.

Expected run-time is O(n log n)-time, but this is not true in the worst-case.
● Symbol table.  The keys are ordered and each key has an associated value.

Find, insert, and remove in expected O(log n)-time.

Applications


