
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 23

● Lab 7 — Preview
● Binary Search Trees

○ Operations (Part 2)
○ structure Package
○ Applications
○ Efficiency

● Self-Balancing Search Trees

Binary Search Trees II

Data Structures & Advanced Programming 2Williams College CSCI 136

Lab 7 — Preview

Data Structures & Advanced Programming 3Williams College CSCI 136

The lab is focused on the two-player game hexapawn (or hex-a-pawn) created by Martin Gardner.
● Create a “game tree” of all of the possible moves. The nodes are board configurations and

whose turn it is. The root is the initial configuration on white’s turn. The children of a node are
the configurations that can be reached by the current player making one move. The game ends
at each leaf node, where the current payer cannot make a move.

● To “learn” from a loss, a (computer) player can prune its own version of the game tree, so that
it never makes the same last move (which it knows leads to a loss).

https://en.wikipedia.org/wiki/Martin_Gardner

Data Structures & Advanced Programming 4Williams College CSCI 136

Binary Search Trees
continued …

Data Structures & Advanced Programming 5Williams College CSCI 136

Last class, we discussed how to implement find (contains) and insert (add).
Now try your best to reproduce these methods.
1. Write recursive pseudocode for find: determine if a target value t is in a binary search tree.
2. [Time permitting] Write recursive pseudocode for insert: add value t to a binary search tree.

In this part, you can assume that value t is not already in the binary search tree.

Exercise: find and insert

Notes:
● If node is a node in the tree, then you can access its value and children as follows:

node.value, node.left, node.right
● What are your base cases?
● Remember to make a new node when inserting.

Write your answer for 3 minutes.
Then trade notes with a neighbor for 2 minutes.

Data Structures & Advanced Programming 6Williams College CSCI 136

Pseudocode for find and insert.
● insert’s first case is only for empty trees.

In this case, the tree’s root node is being created.

Remember that there is no single “correct” pseudocode style.
● Some may prefer to use true instead of yes (as in previous slides).
● Some may prefer to use null instead of empty (as in previous slides).
● Some may prefer to use the argument name node instead of root (as in previous slides).
● Some may prefer to use .left() or left() instead of .left.

function find(node, target)
 if node is null then
 return false

 if node.value == target then
 return true

 if target < node.value then
 return find(node.left, target)
 else
 return find(node.right, target)

function insert(node, value)
 if node == null then
 node = new node(value)
 return

 if value < node.value then
 if node.left is null then
 node.left = new node(value)
 else
 insert(node.left, value)
 else
 if node.right == null then
 node.right = new node(value)
 else
 insert(node.right, value)

Data Structures & Advanced Programming 7Williams College CSCI 136

Operations
(Part 2)

Data Structures & Advanced Programming 8Williams College CSCI 136

How can we delete a value from a binary search tree?
● Are there any easy cases?
● Can you convert from a hard case to an easy case?

Recall our operations on binary heaps.

Question: Delete

Think about the quality of your approach.
● What is its run-time? Let n be the number of values currently in the structure.
● Would it cause subsequent operations (find, insert, or delete) to take longer?

We’ll aim for self-contained pseudocode that is similar to the textbook’s approach.

Think about this for 2 minutes.
Then discuss it with your neighbor for 2 minutes.

Data Structures & Advanced Programming 9Williams College CSCI 136

Binary Search Tree: Delete (Easy Cases) Let’s focus on two easy cases:
1. Deleting a leaf.

In this case, we just remove it.
2. Deleting a node with one child.

In this case, we can move the
subtree rooted at the child into the
deleted node’s position.

After these deletions, the subtree
conditions will still hold at each node.
Notes:
● We could identify more easy cases.

We’ll focus on these because they
help us solve the remaining cases.

● Are these really different cases?
We can use a combined easy case:
A node has at most one child.

8

3

1 6 14

10

134 7
Delete 4

Delete 10

Data Structures & Advanced Programming 10Williams College CSCI 136

Binary Search Tree: Delete (Easy Cases)

8

3

1 6

14

13

7
Delete 4

Delete 10

Let’s focus on two easy cases:
1. Deleting a leaf.

In this case, we just remove it.
2. Deleting a node with one child.

In this case, we can move the
subtree rooted at the child into the
deleted node’s position.

After these deletions, the subtree
conditions will still hold at each node.
Notes:
● We could identify more easy cases.

We’ll focus on these because they
help us solve the remaining cases.

● Are these really different cases?
We can use a combined easy case:
A node has at most one child.

Data Structures & Advanced Programming 11Williams College CSCI 136

What if we swap v and s?
● The subtree condition will only be

violated by v and s. Why?
● The value v is now either (a) in a leaf, or

(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node
with two children. Let the node’s value be v.
Due to its left child, v isn’t the smallest value.
The next smallest value s (i.e., largest value s with
s < v) is the rightmost descendant of its left
child (i.e., go left ocne, then right as much as possible).

8

3

1 6 14

10

134 7

Delete 8

s = 7

Data Structures & Advanced Programming 12Williams College CSCI 136

What if we swap v and s?
● The subtree condition will only be

violated by v and s. Why?
● The value v is now either (a) in a leaf, or

(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node
with two children. Let the node’s value be v.
Due to its left child, v isn’t the smallest value.
The next smallest value s (i.e., largest value s with
s < v) is the rightmost descendant of its left
child (i.e., go left once, then right as much as possible).

7

3

1 6 14

10

134 8

Delete 8

s = 7

Data Structures & Advanced Programming 13Williams College CSCI 136

What if we swap v and s?
● The subtree condition will only be

violated by v and s. Why?
● The value v is now either (a) in a leaf, or

(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node
with two children. Let the node’s value be v.
Due to its left child, v isn’t the smallest value.
The next smallest value s (i.e., largest value s with
s < v) is the rightmost descendant of its left
child (i.e., go left once, then right as much as possible).

7

3

1 6 14

10

134

Delete 8

Data Structures & Advanced Programming 14Williams College CSCI 136

What if we swap v and s?
● The subtree condition will only be

violated by v and s. Why?
● The value v is now either (a) in a leaf, or

(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.
Delete also works with the next largest value (i.e., smallest
ℓ with ℓ > v) in the leftmost descendant of its right child.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node
with two children. Let the node’s value be v.
Due to its left child, v isn’t the smallest value.
The next smallest value s (i.e., largest value s with
s < v) is the rightmost descendant of its left
child (i.e., go left once, then right as much as possible).

8

3

1 6 14

10

134 7

Delete 8

ℓ = 10

Data Structures & Advanced Programming 15Williams College CSCI 136

What if we swap v and s?
● The subtree condition will only be

violated by v and s. Why?
● The value v is now either (a) in a leaf, or

(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.
Delete also works with the next largest value (i.e., smallest
ℓ with ℓ > v) in the leftmost descendant of its right child.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node
with two children. Let the node’s value be v.
Due to its left child, v isn’t the smallest value.
The next smallest value s (i.e., largest value s with
s < v) is the rightmost descendant of its left
child (i.e., go left once, then right as much as possible).

10

3

1 6 14

8

134 7

Delete 8

ℓ = 10

Data Structures & Advanced Programming 16Williams College CSCI 136

What if we swap v and s?
● The subtree condition will only be

violated by v and s. Why?
● The value v is now either (a) in a leaf, or

(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.
Delete also works with the next largest value (i.e., smallest
ℓ with ℓ > v) in the leftmost descendant of its right child.

Binary Search Tree: Delete (Hard Case) In the remaining case, we must delete a node
with two children. Let the node’s value be v.
Due to its left child, v isn’t the smallest value.
The next smallest value s (i.e., largest value s with
s < v) is the rightmost descendant of its left
child (i.e., go left once, then right as much as possible).

10

3

1 6

4 7

Delete 8

14

13

Data Structures & Advanced Programming 17Williams College CSCI 136

Binary Search Tree: delete
This pseudocode implements the delete operation recursively and returns if it was successful.
function delete(node, target)
 // Base case: Target not in tree.
 if node == null then return false

 // The target is not in this node.
 if node.value < target then
 return delete(node.left, target)
 else if node.value > target then
 return delete(node.right, target)

 // Determine if node is a child.
 isLeft = false
 isRight = false
 parent = node.parent
 if parent ≠ null then
 isLeft = (parent.left == node)
 isRight = (parent.right == node)

This approach uses .parent references.
The deletion may require the data structure’s root reference to be updated (not shown).

// Combined easy case: At most one child.
if node.left == null then
 if isLeft then parent.left = node.right
 if isRight then parent.right = node.right
 return true
else if node.right == null then
 if isLeft then parent.left = node.left
 if isRight then parent.right = node.left
 return true

// Hard case: Find next smallest s.
s = node.left
while s.right == null
 s = s.right

// Then swap values and finish recursively.
node.value = s.value
s.value = target
return delete(s, target)

Alternatively, we could
find the next largest ℓ.

Data Structures & Advanced Programming 18Williams College CSCI 136

structure Package

Data Structures & Advanced Programming 19Williams College CSCI 136

The textbook’s approach for delete (remove) has some similarities and differences:
● Figure 14.2 (a)–(b) are the combined easy case: A node has at most one child.

Figure 14.2 (c) is an additional easy case that is needed using this approach.
● remove calls protected methods including locate (which returns a node to remove) and

removeTop (which returns the modified subtree); remove fixes the parent references.

(a) and (b) are the
combined easy case.

The hard case.
(c) is another easy

case required by this
approach

Data Structures & Advanced Programming 20Williams College CSCI 136

remove and its helper functions in the structure5 package.

Data Structures & Advanced Programming 21Williams College CSCI 136

remove and its helper functions in the structure5 package.

Data Structures & Advanced Programming 22Williams College CSCI 136

remove and its helper functions in the structure5 package.

Data Structures & Advanced Programming 23Williams College CSCI 136

Applications

Data Structures & Advanced Programming 24Williams College CSCI 136

Binary search trees have many applications:
● Tree sorting. Insert all of the values, then perform an in-order traversal.

Expected run-time is O(n log n)-time, but this is not true in the worst-case.
● Symbol table. The keys are ordered and each key has an associated value.

Find, insert, and remove in expected O(log n)-time.

Applications

