Williams College ata Structures & Advanced Programming CSCI136 1

e Lab7 — Preview
e Binary Search Trees
Lectu re 23 o Operations (Part 2)
o structure Package
Binary Search Trees | o Applications
o Efficiency
e Self-Balancing Search Trees

Williams College Data Structures & Advanced Programming CSCI136 2

Lab 7 — Preview

Williams College

Data Structures & Advanced Programming

Hexapawn

From Wikipedia, the free encyclopedia

Hexapawn is a deterministic two-player game invented by
Martin Gardner. It is played on a rectangular board of variable
size, for example on a 3x3 board or on a chessboard. On a
board of size nxm, each player begins with m pawns, one for
each square in the row closest to them. The goal of each player
is to advance one of their pawns to the opposite end of the
board or to prevent the other player from moving.

Hexapawn on the 3x3 board is a solved game; with perfect play,
white will always lose in 3 moves: (1.b2 axb2 2.cxb2 c2 3.a2
c1#). Indeed, Gardner specifically constructed it as a game with
a small game tree, in order to demonstrate how it could be
played by a heuristic Al implemented by a mechanical computer

based on Donald Michie's Matchbox Educable Noughts and Crosses Engine.

A variant of this game is octopawn, which is played on a 4x4 board with 4 pawns on each side. In
octopawn, if both players play well, the second player to move will always lose.

2.

14

A 3x3 hexapawn board &1

Available for your use are several Java classes:

HexBoard. This class describes the state of a board. The default constructor builds the 3 x 3
starting HexBoard. You can ask a board (with its moves(color) method) to return
a Vector of the HexMoves that are possible for a particular color (HexBoard.WHITE
or HexBoard.BLACK) from the position. The win(color) method allows you to ask a
HexBoard if the current position is a win for a particular color. A static utility method,
HexBoard. opponent (color), takes a color and returns the opposite color.
The main method of this class allows a human to play Hex-a-Pawn against a computer
that moves randomly. It is a demonstration of how HexBoards are manipulated and
printed.

HexMove. This class describes the movement of a pawn. The result of HexBoard.moves is a
Vector of HexMove. Given a HexBoard and a HexMove one can construct the resulting
HexBoard using a HexBoard constructor. These two classes—HexBoard and HexMove—
are vital in exploring the state-space of the Hex-a-Pawn game.

GameTree. This is one of the classes you will construct. The GameTree nodes will form a large
tree of HexBoard states, related by player moves. At the root is the starting position,
ready for WHITE to move. The next level of the tree describes HexBoard positions that
are the result of a WHITE move, ready for BLACK to move. The 3 x 3 game leads to a
tree with 252 nodes. We expect that players will traverse a single tree recursively and,
if they wish, prune the tree to learn from losses.

Player. The Player interface describes the methods that must be provided by agents that
play the game. Every Player must have a name and color, accessible through getName ()
and getColor (), respectively. In addition, they must support a play(node,opponent)
method takes a GameTree node and an opposing Player. This method plays the game
by traversing one level of the GameTree—if it can—and checking for a win. If the player’s
move does not lead to a win, it passes control of the game to its opponent. The result
of the play method is the Player who ultimately wins the game.

Read these class files carefully. Please do not modify the classes HexBoard, HexMove, or
Player.

The lab is focused on the two-player game hexapawn (or hex-a-pawn) created by Martin Gardner.

e Create a “game tree” of all of the possible moves. The nodes are board configurations and
whose turn it is. The root is the initial configuration on white’s turn. The children of a node are
the configurations that can be reached by the current player making one move. The game ends
at each leaf node, where the current payer cannot make a move.

e To “learn” from a loss, a (computer) player can prune its own version of the game tree, so that
it never makes the same last move (which it knows leads to a loss).

https://en.wikipedia.org/wiki/Martin_Gardner

Williams College Data Structures & Advanced Programming CSCI 136 4

Binary Search Trees

continued ...

Williams College Data Structures & Advanced Programming CSCI136 5

Exercise: find and insert

Last class, we discussed how to implement £ind (contains) and insert (add).

Now try your best to reproduce these methods.
1. Write recursive pseudocode for £ind: determine if a target value t is in a binary search tree.

2. [Time permitting] Write recursive pseudocode for insert: add value t to a binary search tree.
In this part, you can assume that value t is not already in the binary search tree.

o e G@
He. O\ R

Write your answer for 3 minutes.
Then trade notes with a neighbor for 2 minutes.

Notes:
e If node is anode in the tree, then you can access its value and children as follows:

node.value, node.left, node.right

e What are your base cases?
e Remember to make a new node when inserting.

Williams College

Data Structures & Advanced Programming

function find(node, target)
if node is null then
return false
if node.value == target then
return true

if target < node.value then

return find(node.left, target)
else

return find(node.right, target)

Pseudocode for find and insert.

e insert’sfirst caseis only for empty trees.
In this case, the tree’s root node is being created.

function insert(node, value)

if node == null then
node = new node(value)
return

if value < node.value then
if node.left is null then
node.left = new node(value)
else
insert(node.left, value)
else
if node.right ==
node.right =

null then
new node(value)

else
insert(node.right, wvalue)

Remember that there is no single “correct” pseudocode style.

e Some may prefer to use true instead of yes (as in previous slides).

e Some may prefer to use null instead of empty (as in previous slides).

e Some may prefer to use the argument name node instead of root (as in previous slides).
e Some may prefertouse .1left() orleft() insteadof .1left.

CSCI136 6

Williams College Data Structures & Advanced Programming CSCI136 7

Operations
(Part 2)

Williams College Data Structures & Advanced Programming CSCI136 8

Question: Delete

How can we delete a value from a binary search tree?
e Are there any easy cases?

e (an you convert from a hard case to an easy case?
Recall our operations on binary heaps.

Think about this for 2 minutes.
Then discuss it with your neighbor for 2 minutes.

Think about the quality of your approach.
e What is its run-time? Let n be the number of values currently in the structure.
e Would it cause subsequent operations (find, insert, or delete) to take longer?

We'll aim for self-contained pseudocode that is similar to the textbook’s approach.

Binary Search Tree: Delete (Easy Cases)

Delete 10

CSCI136 9

Let's focus on two easy cases:

1.

Deleting a leaf.
In this case, we just remove it.

Deleting a node with one child.

In this case, we can move the
subtree rooted at the child into the
deleted node’s position.

After these deletions, the subtree
conditions will still hold at each node.

Notes:

We could identify more easy cases.
We'll focus on these because they
help us solve the remaining cases.
Are these really different cases?
We can use a combined easy case:
A node has at most one child.

CSCI 136 10

Binary Search Tree: Delete (Easy Cases)

Delete 4

Delete 10

Let's focus on two easy cases:

1.

Deleting a leaf.
In this case, we just remove it.

Deleting a node with one child.

In this case, we can move the
subtree rooted at the child into the
deleted node’s position.

After these deletions, the subtree
conditions will still hold at each node.

Notes:

We could identify more easy cases.
We'll focus on these because they
help us solve the remaining cases.
Are these really different cases?
We can use a combined easy case:
A node has at most one child.

Binary Search Tree: Delete (Hard Case)

Delete 8

CSCI 136 11

In the remaining case, we must delete a node
with two children. Let the node’s value be v.

Due to its left child, v isn't the smallest value.
The next smallest value s (i.e., largest value s with
s <v) is the rightmost descendant of its left

child (i.e., go left ocne, then right as much as possible).

What if we swap v and s?
e The subtree condition will only be
violated by v and s. Why?
e The value v is now either (a) in a leaf, or
(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Binary Search Tree: Delete (Hard Case)

Delete 8

CSCI 136 12

In the remaining case, we must delete a node
with two children. Let the node’s value be v.

Due to its left child, v isn't the smallest value.
The next smallest value s (i.e., largest value s with
s <v) is the rightmost descendant of its left

child (i.e., go left once, then right as much as possible).

What if we swap v and s?
e The subtree condition will only be
violated by v and s. Why?
e The value v is now either (a) in a leaf, or
(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Binary Search Tree: Delete (Hard Case)

Delete 8

CSCI 136 13

In the remaining case, we must delete a node
with two children. Let the node’s value be v.

Due to its left child, v isn't the smallest value.
The next smallest value s (i.e., largest value s with
s <v) is the rightmost descendant of its left

child (i.e., go left once, then right as much as possible).

What if we swap v and s?
e The subtree condition will only be
violated by v and s. Why?
e The value v is now either (a) in a leaf, or
(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Williams College Data Structures & Advanced Programming CSCI 136 14

Binary Search Tree: Delete (Hard Case)

In the remaining case, we must delete a node
with two children. Let the node’s value be v.

Due to its left child, v isn't the smallest value.
The next smallest value s (i.e., largest value s with
s <v) is the rightmost descendant of its left

child (i.e., go left once, then right as much as possible).

What if we swap v and s?
e The subtree condition will only be
violated by v and s. Why?
e The value v is now either (a) in a leaf, or
(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Delete also works with the next largest value (i.e., smallest
2 with £ > v) in the leftmost descendant of its right child.

Williams College Data Structures & Advanced Programming CSCI 136 15

Binary Search Tree: Delete (Hard Case)

In the remaining case, we must delete a node
with two children. Let the node’s value be v.

Due to its left child, v isn't the smallest value.
The next smallest value s (i.e., largest value s with
s <v) is the rightmost descendant of its left

child (i.e., go left once, then right as much as possible).

What if we swap v and s?
e The subtree condition will only be
violated by v and s. Why?
e The value v is now either (a) in a leaf, or
(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Delete also works with the next largest value (i.e., smallest
2 with £ > v) in the leftmost descendant of its right child.

Williams College Data Structures & Advanced Programming CSCI 136 16

Binary Search Tree: Delete (Hard Case)

Delete 8

In the remaining case, we must delete a node
with two children. Let the node’s value be v.

Due to its left child, v isn't the smallest value.
The next smallest value s (i.e., largest value s with
s <v) is the rightmost descendant of its left

child (i.e., go left once, then right as much as possible).

What if we swap v and s?
e The subtree condition will only be
violated by v and s. Why?
e The value v is now either (a) in a leaf, or
(b) in a node that only has one child
(since it cannot have a right child).

Therefore, after the swap, it is an easy case
to delete the node containing v.

Delete also works with the next largest value (i.e., smallest
2 with £ > v) in the leftmost descendant of its right child.

Williams College Data Structures & Advanced Progra i CSCI 136 17

Binary Search Tree: delete
This pseudocode implements the delete operation recursively and returns if it was successful.

function delete(node, target) // Combined easy case: At most one child.
// Base case: Target not in tree. if node.left == null then
if node == null then return false if isLeft then parent.left = node.right

if isRight then parent.right = node.right
return true

else if node.right == null then
if isLeft then parent.left = node.left
if isRight then parent.right = node.left
return true

// The target is not in this node.
if node.value < target then
return delete(node.left, target)
else if node.value > target then
return delete(node.right, target)

// Determine if node is a child.
isLeft = false

isRight = false

parent = node.parent

if parent # null then

// Hard case: Find next smallest s.

s = node.left

while s.right == null
s = s.right

Alternatively, we could
find the next largest 4.

isLeft = (parent.left == node) // Then swap values and finish recursively.
isRight = (parent.right == node) node.value = s.value
s.value = target
This approach uses .parent references. s deletels, facget)

The deletion may require the data structure’s root reference to be updated (not shown).

Williams College Data Structures & Advanced Programming CSCI 136 18

structure Package

Williams College Data Structures & Advanced Programming CSCI 136 19

The hard case.

3 (a) and (b) are the
i \ combined easy case.
(c) is another easy
(@ o case required by this
©

approach
Figure 14.2 The three simple cases of removing a root value from a tree. Figure 14.3 Removing the root of a tree with a rightmost left descendant.

predecessor(x)

The textbook's approach for delete (remove) has some similarities and differences:

Figure 14.2 (a)-(b) are the combined easy case: A node has at most one child.

Figure 14.2 (c) is an additional easy case that is needed using this approach.

remove calls protected methods including 1ocate (which returns a node to remove) and
removeTop (which returns the modified subtree); remove fixes the parent references.

Williams College

Data Structures & Advanced Programming

[%%
* @pre root and value are non-null
* @post returned: 1 - existing tree node with the desired value, or
* 2 - the node to which value should be added
L
protected BinaryTree<E> locate(BinaryTree<E> root, E value)
{
E rootValue = root.value();
BinaryTree<E> child;

// found at root: done

if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < @)

{

child = root.right();
} else {

child = root.left();
}

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) {
return root;
} else {
return locate(child, value);
}

remove and its helper functions in the structures package.

CSCI 136 20

Williams College Data Structures & Advanced Programming CSCI 136 21

protected BinaryTree<E> predecessor(BinaryTree<E> root)
i
Assert.pre(!root.isEmpty(), "No predecessor to middle value.");
Assert.pre(!root.left().isEmpty(), "Root has left child.");
BinaryTree<E> result = root.left();
while (!'result.right().isEmpty()) {
result = result.right();
}
return result;

}

protected BinaryTree<E> successor(BinaryTree<E> root)
{
Assert.pre(!root.isEmpty(), "Tree is non-null.");
Assert.pre(!root.right().isEmpty(), "Root has right child.");
BinaryTree<E> result = root.right();
while (!result.left().isEmpty()) {
result = result.left();
}

return result;

remove and its helper functions in the structures package.

Williams College

Data Structures & Advanced Programming

/%%

Remove an value "equals to" the indicated value. Only one value
is removed, and no guarantee is made concerning which of duplicate
values are removed. Value returned is no longer part of the
structure

@post Removes one instance of val, if found

@param val Value sought to be removed from tree
@return Actual value removed from tree

F X KK KKK KRH

*/
public E remove(E value)
{
if (isEmpty()) return null;

if (value.equals(root.value())) // delete root value
{
BinaryTree<E> newroot = removeTop(root);
count—;
E result = root.value();
root = newroot;
return result;
}
else
{
BinaryTree<E> location = locate(root,value);

if (value.equals(location.value())) {
count—;
BinaryTree<E> parent = location.parent();
if (parent.right() == location) {
parent.setRight(removeTop(location));
} else {
parent.setLeft(removeTop(location));
}
return location.value();
}
}

return null;

Removes the top node of the tree rooted, performs the necessaryl
rotations to reconnect the tree.

@pre topNode contains the value we want to remove

@post We return an binary tree rooted with the predecessor of topnode.
@param topNode Contains the value we want to remove

Q@return The root of a new binary tree containing all of topNodes
descendents and rooted at topNode's pred r

¥R X K K ¥ ¥ ¥

*/
protected BinaryTree<E> removeTop(BinaryTree<E> topNode)
{
// remove topmost BinaryTree from a binary search tree
BinaryTree<E> left = topNode.left();
BinaryTree<E> right = topNode.right();
// disconnect top node
topNode.setLeft (EMPTY);
topNode.setRight (EMPTY);
// Case a, no left BinaryTree
// easy: right subtree is new tree
if (left.isEmpty()) { return right; }
// Case b, no right BinaryTree
/] easy: left subtree is new tree
if (right.isEmpty()) { return left; }
// Case c, left node has no right subtree
// easy: make right subtree of left
BinaryTree<E> predecessor = left.right();
if (predecessor.isEmpty()) {
left.setRight(right);
return left;
}
// General case, slide down left tree
1/ harder: successor of root becomes new root
1/ parent always points to parent of predecessor
BinaryTree<E> parent = left;
while (!predecessor.right().isEmpty()) {
parent = predecessor;
predecessor = predecessor.right();
¥
// Assert: predecessor is predecessor of root
parent.setRight(predecessor.left());
predecessor.setLeft(left);
predecessor.setRight(right);
return predecessor;

remove and its helper functions in the structures package.

CSCI 136 22

Williams College Data Structures & Advanced Programming CSCI 136 23

Applications

Applications
Binary search trees have many applications:
e Tree sorting. Insert all of the values, then perform an in-order traversal.
Expected run-time is O(n log n)-time, but this is not true in the worst-case.

Data Structures & Advanced Programming

e Symbol table. The keys are ordered and each key has an associated value.

Find, insert, and remove in expected O(log n)-time.

CSCI 136 24

