
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 22

● Binary Search (review)
○ Example
○ Log Reminders
○ Algorithm and Limitations

● Binary Search Trees
○ Design
○ Subtree Conditions
○ Operations (Part I)

Binary Search Trees I

Data Structures & Advanced Programming 2Williams College CSCI 136

Binary Search
review

Data Structures & Advanced Programming 3Williams College CSCI 136

Example

Data Structures & Advanced Programming 4Williams College CSCI 136

Searching an English Dictionary
Suppose that we want to look up a word in an English Dictionary.
● How would you search to find the word?
● How many page flips would it take?

847 pages
49578 locations

Includes Preface and Supplements

Prediction for the Dictionary of Newfoundland English:
● 10 page flips for book.
● 16 for Kindle locations.

Data Structures & Advanced Programming 5Williams College CSCI 136

toutin?

Data Structures & Advanced Programming 6Williams College CSCI 136

495781

24790

Data Structures & Advanced Programming 7Williams College CSCI 136

4957824791

37184

Data Structures & Advanced Programming 8Williams College CSCI 136

4957837185

43382

Data Structures & Advanced Programming 9Williams College CSCI 136

4338137185

40283

Data Structures & Advanced Programming 10Williams College CSCI 136

37185 40282
38734

Data Structures & Advanced Programming 11Williams College CSCI 136

37185 38733
37959

Data Structures & Advanced Programming 12Williams College CSCI 136

3873337960
38347

Data Structures & Advanced Programming 13Williams College CSCI 136

3834637960

38153

Data Structures & Advanced Programming 14Williams College CSCI 136

Toutin
Yummy?!

Data Structures & Advanced Programming 15Williams College CSCI 136

Range of Possibilities Guesses

left
position+1

right
position-1

length
right - left + 1

position
left + ⌊length/2⌋ word result

1 49578 49578 24790 northern dancers too small

24791 49578 24788 37184 tatty too small

37185 49578 12394 43382 Supplemental Words
coaker too big

37185 43381 6197 40283 whittle too big

37185 40282 3098 38734 truckman too big

37185 38733 1549 37959 tom cod too small

37960 38733 774 38347 trap too big

37960 38346 387 38153 toutin correct!

Summary of Guesses

Data Structures & Advanced Programming 16Williams College CSCI 136

Log Reminders

Data Structures & Advanced Programming 17Williams College CSCI 136

Reminders on log(n)
Remember that log(n) is the number of times we can divide an integer n ≥ 0 by 2 until reaching 1.
In other words, it is the length of the following sequence.

n/2, n/4, n/8, …, 1

A common goal in computer science is to reduce factors of n to factors of log2(n).
● Linear searching in a sorted array is O(n)-time.

Binary searching in a sorted array is O(log2(n))-time.
● Sorting an array is O(n2)-time using obvious algorithms (e.g. selection or insertion sort).

Sorting an array is O(n · log2(n))-time using better algorithms (e.g. merge or quick sort).

We use log2(n) so often that we often denote it by log(n) or lg(n) or log n.
Also, remember that O(log(n)) is much smaller than O(n).
● 210 = 1024 so log(1024) = 10. Or roughly, log(1,000) < 10.
● 220 = 1048576 so log(1048576) = 20. Or roughly, log(1,000,000) < 20.

This can be computed using log(x · y) = log(x) + log(y).
That is, log(1000000) = log(1000 · 1000) = log(1000) + log(1000) < 10 + 10 = 20.

Data Structures & Advanced Programming 18Williams College CSCI 136

Original Log Commercial | The Ren & Stimpy Show | NickRewind

http://www.youtube.com/watch?v=-fQGPZTECYs
https://www.youtube.com/watch?v=-fQGPZTECYs&ab_channel=NickRewind

Data Structures & Advanced Programming 19Williams College CSCI 136

Algorithm and Limitations

Data Structures & Advanced Programming 20Williams College CSCI 136

Binary Search Algorithm
Given a sorted array of length n, we wish to determine if a target value t appears within the array.
The binary search algorithm compares t to the value m in the middle of the array.

● If t < m, then m can only be located in the first half of the array.
● If t = m, then t has been found.
● If t > m, then m can only be located in the second half of the array.

The algorithm takes O(log(n))-time as opposed to linear search which takes O(n)-time.
Notice that the algorithm also identifies when an target value is not in the array.

Searching for -1 in the sorted array.

-10 -8 -5 -5 -2 0 1 3 3 7 11 13 20 22 22 25-10 -8 -5 -5 -2 0 1 3 3 7 11 13 20 22 22 25

-10 -8 -5 -5 -2 0 1 3-10 -8 -5 -5 -2 0 1 3

0 1 30 1 3

00

Data Structures & Advanced Programming 21Williams College CSCI 136

Limitations of Binary Search
Binary search assumes that its values are sorted and are accessible in O(1)-time via indexes.
Therefore, it is effective in an array and not a standard linked list.

Without further thought, it is best suited for static data and does not work well with dynamic data.
More specifically, deleting or inserting a value in a sorted array of length n takes O(n)-time.

This is fine for something like an English dictionary, which is not updated frequently, but in computer
science we use dictionaries for a variety of purposes.

Data Structures & Advanced Programming 22Williams College CSCI 136

Binary Search Trees (BST)

Data Structures & Advanced Programming 23Williams College CSCI 136

Design

Data Structures & Advanced Programming 24Williams College CSCI 136

Goals
Previously we discussed how the binary search algorithm is not always suitable for dynamic data.
More specifically, if we maintain a sorted array, then it takes O(n)-time to insert and delete values,
where n is the number of values currently stored in the array.

Let’s try to achieve O(log n)-time operations for find / insert / delete.

We'll design a binary tree structure that has some of the benefits of sorted arrays and some of the
benefits of linked lists.

Goals.Stored in a sorted array.

find insert delete

O(log n) O(n) O(n)

find insert delete

O(log n) O(log n) O(log n)

Data Structures & Advanced Programming 25Williams College CSCI 136

The Benefits of Doubly Linked Lists and Sorted Arrays
The advantage of a doubly linked list is being able to quickly delete/insert elements.

How can we combine these two benefits?
● We will attempt to adapt the doubly linked list.
● Add links to the median elements instead of to the immediate left and right.

The median value between the xth and yth largest values can be
found in position (x+y)/2.

The pointers enable quick additions and deletions.

prev data next -3 0 7 10 15 42 44 88

1 2 3 4 5 6 7 8

x y

The advantage of a sorted array is finding elements quickly using binary search.
● Binary search is based on finding the median between two values.

Data Structures & Advanced Programming 26Williams College CSCI 136

-3 0 7 10 15 42 44 88 94

1 2 3 4 5 6 7 8 9

15

5

7 88

3 8

0 10 44 94

2 4 7 9

-3 42

1 6

Intuition
Suppose that the n elements are sorted.
We want to be able to access the middle
element in position n/2, so make it the root.

Depending on the value we are search for,
we then want access to element that is in
position n/4 or 3n/4, so make these two
nodes the children of the root.

This creates a binary tree structure.
Furthermore, there are restrictions on the
values of the nodes. What are they?

Data Structures & Advanced Programming 27Williams College CSCI 136

Subtree Conditions

Data Structures & Advanced Programming 28Williams College CSCI 136

Binary Search Tree
A binary search tree (BST) is a binary tree with values at each node that satisfy the following two
subtree conditions:
● If b is the value of a node and a is a value in its left subtree, then a ≤ b.
● If b is the value of a node and c is a value in its right subtree, then b ≤ c.

This is true for every node b, and not just the root.

b

≤ b ≥ b

Data Structures & Advanced Programming 29Williams College CSCI 136

Example: Binary Search Tree

8

3

1 6 14

10

134 7

Data Structures & Advanced Programming 30Williams College CSCI 136

Consider these two edge conditions for a binary tree with values in its nodes.
● If b is the value of a node and a is the value of its left child, then a ≤ b.
● If b is the value of a node and c is the value of its right child, then b ≤ c.

Let’s refer to these as the child conditions, since they apply only to children and not to subtrees.
Question: Are the child conditions equivalent to the subtree conditions? It’s clear that the subtree
conditions imply the child conditions, but is the converse true? Do the child conditions imply the subtree conditions?

Question: Child vs Subtree Conditions

If the answer is yes, then provide a brief explanation.
If the answer is no, then provide a small example.

Think about this for 2 minutes.
Then discuss it with your neighbor for 2 minutes.

10

5

20

The answer is no.
This tree satisfies the child conditions

but it doesn’t satisfy the subtree conditions.

Data Structures & Advanced Programming 31Williams College CSCI 136

Operations
(Part 1)

Data Structures & Advanced Programming 32Williams College CSCI 136

Operations for Binary Search Trees
Binary Search Trees are typically associated with the following three operations.
(Side note: When working with data structures, you’ll find that a thesaurus can come in handy!
(This is because different terms are used for the same operations. We’ll practice this for BSTs.
(It will also simplify comparisons between these slides and the textbook + structure package.)

● Find / Contains. Return yes or no depending on whether the given element is present.
In these slides, we’ll refer to the method as find, while the textbook names it contains.

● Insert / Add. Add a new element into the binary search tree.
In these slides, we’ll refer to the method as insert, while the textbook names it add.

● Delete / Remove. Delete the provided element from the binary search tree.
In these slides, we’ll refer to the method as delete, while the textbook names it remove.
(We will see this operation in the next lecture.)

In each case, we refer to the binary search tree by providing a reference (or pointer) to its root.

Data Structures & Advanced Programming 33Williams College CSCI 136

Binary Search Tree: Find

To determine if a value is in the binary
search tree we repeatedly do the
following:
● If the value is found at the root, then

the answer is yes.
● Otherwise, start the search again at

the root's left child or right child
depending on the relative order of the
value in the root and the value being
searched for.

● Answer no if the root is empty.
This is most easily implemented using
recursion, but it can also be implemented
using iteration (i.e., a loop).

8

3

1 6 14

10

134 7

Find 5

Data Structures & Advanced Programming 34Williams College CSCI 136

Binary Search Tree: Find
The following pseudocode implements the find operation recursively.

function find(root, target)
 if root is empty then
 return no

 if root.value == target then
 return yes

 if target < root.value then
 return find(root.left, target)
 else
 return find(root.right, target)

50

30 90

10 40 70 95

8020 60

Example: Find value 40 (yes).
Example: Find value 45 (no).

50

30 90

10 40 70 95

8020 60

Question: How long does this algorithm take?
Answer: O(h)-time where h is the height of the tree.

Data Structures & Advanced Programming 35Williams College CSCI 136

5

Binary Search Tree: Insert

To insert into a binary search tree we
first perform a find.
The location where the node does not
appear is the location where we will
place the new node.
This makes sense, since the insertion
will be in the same location that a
subsequent find operation will check.
Also note that this approach will not
violate any of the subtree conditions.

8

3

1 6 14

10

134 7

Insert 5

Data Structures & Advanced Programming 36Williams College CSCI 136

Binary Search Tree: Insert
The following pseudocode implements the insert operation recursively.
● We’ll discuss the issue of repeated values in the next lecture.

// Assumes that value is not in the tree.
function insert(root, value)
 if root is empty then
 root = new node(value)
 return

 if root.value < value then
 if root.left is empty then
 root.left = new node(value)
 else
 insert(root.left, value)
 else
 if root.right is empty then
 root.right = new node(value)
 else
 insert(root.right, value)

50

30 90

10 40 70 95

8020 60

Example: Insert 45 into the tree.

This algorithm also takes O(h)-time where h is the height of the tree.

45

