
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 21
● Exploring Binary Trees

○ Challenge 2
○ Challenge 3
○ Challenge 4

● structure Package
● Huffman Codes

Trees III

Data Structures & Advanced Programming 2Williams College CSCI 136

Exploring Binary Trees

Data Structures & Advanced Programming 3Williams College CSCI 136

How can we determine the following value in a binary tree?
● The height of the tree.

Challenge: Exploring Binary Trees (Part 2)

Hints:
● Consider a recursive algorithm.
● Remember that a parent and child are not at the same level.

Think about this for 1 minute.
Then discuss it with your neighbor for 2 minutes.

-

- -

- - -

- --

This binary tree has height 3
(counting from 0).

Data Structures & Advanced Programming 4Williams College CSCI 136

Determining the height of a binary tree.

// Return the height of the tree rooted at node.
// Note: A tree with one node has height 0.
height(node)
 // todo

// Main method: Run the algorithm from the tree’s root.
answer = height(root)

-

- -

- - -

- --

-

4

2 3

1 2 0

0 10

0

Data Structures & Advanced Programming 5Williams College CSCI 136

Right: Determining the height of a binary tree. Left: The return values shown in each node.

// Return the height of the tree rooted at node.
// Note: A tree with one node has height 0.
height(node)
 // Base case: the root node is null
 if node is null then
 return 0

 // Base case: the tree consists only of the root
 if node.left is null and node.right is null then
 return 0

 // Determine the height of the two subtrees.
 heightLeft = height(node.left)
 heightRight = height(node.right)

 // Return the maximum plus one.
 return max(heightLeft, heightRight) + 1

// Main method: Run the algorithm from the tree’s root.
answer = height(root)

4

2 3

1 2 0

0 10

0

Data Structures & Advanced Programming 6Williams College CSCI 136

How can we determine the following values in a binary tree?
● The total number of nodes.
● The smallest level that has a leaf.
● The number of left links that are used.

Challenge: Exploring Binary Trees (Part 3)

What other quantities could we try to count?
●

Think about this for 1 minute.
Then discuss it with your neighbor for 4 minutes.

-

- -

- - -

- --

This binary tree has 8 total nodes.
The smallest level of a leaf is 2.

It has 5 left links in total.

Data Structures & Advanced Programming 7Williams College CSCI 136

-

- -

- - -

- --

-

-

7

2 4

1 2 1

0 10

0

0

Determining the number of left links in a binary tree.

// Return the number of left links in a binary tree that is
// rooted at a given node.
left(node)
 // todo

// Main method: Run the algorithm from the tree’s root.
answer = left(root)

Data Structures & Advanced Programming 8Williams College CSCI 136

-

- -

- - -

- --

-

-

7

2 4

1 2 1

0 10

0

0

Determining the number of left links in a binary tree.

// Return the number of left links in a binary tree that is
// rooted at a given node.
left(node)
 // todo

// Main method: Run the algorithm from the tree’s root.
answer = left(root)

Data Structures & Advanced Programming 9Williams College CSCI 136

How could we print out a nice text representation of a binary tree?
Challenge: Exploring Binary Trees (Part 4)

Questions:
● What do you interpret nice to mean?
● What values would you want to compute?

Think about this for 1 minute.

-

- -

- - -

- --

This binary tree could be printed out as
o

/ \
o o
/ /\
o o o
/\ / .
o oo .

Data Structures & Advanced Programming 10Williams College CSCI 136

structure Package

Data Structures & Advanced Programming 11Williams College CSCI 136

Are you surprised by anything?
● Everything is a tree!
● There is not a separate class for nodes (as was the case with structure’s linked lists).

Data Structures & Advanced Programming 12Williams College CSCI 136

Implementations for size (i.e. number of nodes) and height and more.

Data Structures & Advanced Programming 13Williams College CSCI 136

Huffman Codes

Data Structures & Advanced Programming 14Williams College CSCI 136

How can we encode an image in binary (i.e., in a file)?
● Assign a code word for each color.
● Write the code words for each pixel’s color in row major

order (i.e., from left-to-right starting at the top row).

How should we assign the code words? Several options below.

Encoding an Image

The start of the file for
each of the three encoding schemes.

1. Use 00000001 for yellow, 00000010 for red, etc.
This works, but it is wasteful.

2. Use 0 for yellow, 1 for red, 10 for green, 11 for teal, etc.
This is compact, but it results in a prefix problem.
○ Suppose that the file starts with 11.

That could indicate two red pixels or one blue pixel.
The problem is that code 1 is prefix of code 11.

3. Use binary strings of the same length. Length: ⌈log(n)⌉
Use 000 for yellow, 001 for red, etc.

An image with n = 8 colors.

1. 00000001 00000001 00000010 …

2. 0 0 1 1 1 1 1 1 11 11 0 0 …

3. 000 000 001 001 001 001 …

Data Structures & Advanced Programming 15Williams College CSCI 136

Let’s try to improve upon the 3rd encoding scheme from the prefix slide.
We want to represent each color using as few bits as possible.
● Frequent colors should use fewer bits.

Example: Huffman Codes

Data Structures & Advanced Programming 16Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 17Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 18Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 19Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 20Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 21Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 22Williams College CSCI 136

Repeatedly merge the two lowest frequency nodes under a parent node.
● The left / right edges have label 0 / 1.
● The parent’s node is the sum of the frequencies.

Data Structures & Advanced Programming 23Williams College CSCI 136

The path to each color gives its encoding. e.g. green is 010.

Data Structures & Advanced Programming 24Williams College CSCI 136

The resulting image can then be encoded as below. (Bit saving occurs for the black and peach colors.)

110 110 011 011 011 011 011 0111111 1111 110…
Notes:
● We also need to store the codes and the image dimensions. Otherwise, this stream of

colors could be interpreted as a 10-by-10 or 5-by-20 image, since 10 · 10 = 5 · 20 = 100.
● This is an example of a greedy algorithm. You’ll see many more of these in CSCI 256.

Data Structures & Advanced Programming 25Williams College CSCI 136

How can we be sure that the bit stream is uniquely unencodable?

110 110 011 011 011 011 011 0111111 1111 110…

The code words satisfy the prefix property (i.e., no code word is the prefix of another code word).
This is due to the fact that every color is stored in a leaf in this tree. For example, the codeword
for yellow is 110. Since it is in a leaf, there cannot be another code word starting with 110.

