CSCI136 1

e Introduction
o Types of Trees

e Binary Trees

LECtu re 1 9 o Binary Search Tree (preview)
o Implementation
Trees | e Binary Tree Traversals

o Preorder
o Inorder
o Postorder

Williams College Data Structures & Advanced Programming CSCI136 2

Introduction

o4
(=]
=
=1
=
=1
3

Williams College Data Structures & Advanced Programming CSCI136 4

Trees
A tree consists of two sets with two properties.
e A set of nodes (which are also called vertices) each of which may have a value or label.
e A set of edges which are pairs of distinct nodes.
1. Itis connected meaning that there is a path of edges between any two nodes.
2. ltis acyclic meaning that there is no cycle, which is a path from a node back to itself.
A leaf is a vertex of degree one, and the other vertices are internal vertices.

=

A tree with four leaves and four internal vertices. This is not a tree for two reasons.
Observations: It is not connected (e.g., no path from e to g)

i d there i a cycle (e.g., a, h, b, ©).
e Atree on n vertices has n-1 edges. and there is a cycle (e.g, ,h, b, c)

e Thereis a unique path between any two vertices within a tree.

Williams College Data Structures & Advanced Programming CSCI136 5

Types of Trees

Williams College

Rooted Trees
A rooted tree has a specified root noderr.

The level of a node is its distance to r and its height is the maximum distance.
Every edge joins a parent and a child node, where the parent is closer tor.

Data Structures & Advanced Programming

A rooted tree of height 2.
It has five leaves and two internal nodes.

We draw the root r at the top and each other node below r based on its level.
In Computer Science, it is often assumed that trees are rooted trees.

CSCI136 6

Williams College

Cardinal Trees

An k-ary cardinal tree (or k-ary tree) is a rooted tree where children are specified as 1%, 2", ..., k™.
Each specified child can be present or absent, and there can be at most one of each.

Data Structures & Advanced Programming

CSCI136 7

1 st 3rd 4th 3rd

A node in 4-ary cardinal tree that has a 1%, 3", and 4" child. Another possible node in a 4-ary cardinal tree.

In a binary tree the two children are usually known as the left child and right child.
Binary search trees and heaps are labeled binary trees with special properties.

Williams College Data Structures & Advanced Programming CSCI136 8

Ordered Trees

In an ordered tree, the children of each node are ordered consecutively starting from 1.
e Unlike in a cardinal tree, it is not possible to have an i+1%t child without an it child fori > 1.
For example, a node in an ordered tree cannot have a 2" child without a 15t child.

1st 2nd 3rd 4th 1st 2nd
A node with four children in an ordered tree. A node with two children in an ordered tree.

As with cardinal trees, we typically draw the children from left-to-right according to their order.

CSCI136 9

Data Structures & Advanced Programming

Williams College

Other Variations and Terminology
A labeled tree has labels or values on each vertex.
An edge-labeled tree has labels or values on each edge.

A directed tree has edges with directions (i.e., edge a—b vs b—a).

The terms full and complete are often seen, although usage is not always consistent.

[NAL

QYA

Figure 12.1 Examples of trees. Trees (a) and (b) are three-node trees. Trees are
sometimes symbolized abstractly, as in (c). Tree (b) is full, but (d) is not. Tree (e) is not
full but is complete. Complete trees are symbolized as in (f). Abstract tree (g) has root r

and subtrees (a) and (b).

Page 278 of the textbook

Williams College Data Structures & Advanced Programming CSCI136 10

Binary Trees

Williams College

Data Structures & Advanced Programming CSCI 136 11

Binary Trees

A binary tree a cardinal tree with k = 2. In other words, each node has two specified children that
can either be present or not. These children are known as the left child and right child.

O

left right left right left right left right

There are four possibilities for the children of a node in a binary tree.

In this course, we'll consider two types of labeled binary trees.
e Binary heaps.
e Binary search trees.

Williams College Data Structures & Advanced Programming CSCI 136 12

Binary Search Trees

(preview)

Williams College

Binary Search Tree

A binary search tree is a binary tree with values at each node that satisfy the following two
subtree conditions:

e If xisthe value of anode andy is a value in its left subtree, then x > y.
e If xisthe value of a node and y is a value in its right subtree, then x < y.

Data Structures & Advanced Programming

CSCI 136 13

CSCI 136 14

An example of a binary search tree with root labeled 8.
e All of the values to the left of the root are < 8.
e All of the values to the right of the root are > 8.
This drawing suggests a directed tree with edges pointing from parent to child.

Williams College Data Structures & Advanced Programming CSCI 136 15

Implementation

Williams College Data Structures & Advanced Programming CSCI 136 16

Binary Tree Implementation

Binary trees are typically implemented using nodes and

links (i.e., references) in a manner similar to linked lists.
A main difference is that each node has 3 links instead

of 1 (i.e., singly linked list) or 2 (i.e., doubly linked list).

In some cases, there are good reasons to use a different
type of implementation (e.g., heaps stored in arrays).

Each node object contains the following information: How do we implement this structure?
e Itsvalue.
e Areference to its parent.
e Areference to its left-child.
e Areference to its right-child.

We also maintain a reference to the tree’s top node.
e Thisis called the root. Each node contains a value and references

i - to its parent, left-child, and right-child.
e Itisthe only node whose parent is set to null. 0 its parent, left-child, and right-chi

Williams College Data Structures & Advanced Programming CSCI 136 17

Some implementations use dummy nodes or sentinel nodes.
There are added to ensure that every real node has non-null references to both children nodes.

Williams College Data Structures & Advanced Programming CSCI 136 18

Binary Tree Traversals

Williams College Data Structures & Advanced Programming

Discussion: Traversing a Binary Tree

How can we traverse a binary tree?
In other words, how can be systematically visit every node in a binary tree?
For example, suppose that we wanted to print the value of each node.

Think about this for 2 minutes.
Then discuss it with your neighbor for 3 minutes.

Think about the following points:
e What is the order that you end up visiting the nodes in?
e Is your approach iterative or recursive?

CSCI 136 19

Note that the left and right subtrees are also binary trees, so a recursive approach makes sense.

CSCI 136 20

Inorder Traversal

An inorder traversal prints the value of the
nodes in this binary tree as follows:

1,3,4,6,7,8,10,13, 14

More generally, if the binary tree is a binary
search tree, then an inorder traversal
prints the values in sorted order.

To create this order we start at the root
and do the following recursively.

e Visit values in the left child.

e Visit the root value.

e Visit values in the right child.

For example, the first level of recursion
creates the following

(1,3,4,6,7), 8, (10,13,14)

Williams College Data Structures & Advanced Programming CSCI 136 21

Inorder Traversal (First Animation)
In an inorder traversal each node is visited between its children being visited.
e Blue signifies entering the node for the first time.
e Light blue denotes reentry.
° signifies visiting.

ﬂ // Inorder from node.

inorder (node)
if node is empty then return
inorder (node.left)
(node.value)

@ inorder (node.right)

The steps of this first
animation are not
present in the .pdf, but
they are present for the
second animation.

Example binary search tree Pseudocode

// Run from root.
inorder (root)

The inorder traversal visits the nodes in the following order:
10 25 30 35 45 60 85 75 80 90 95

Williams College Data Structures & Advanced Programming CSCI 136 22

Understanding the Execution Stack during Recursion
Each call to inorder gets a frame in the overall execution stack including its own program

counter (i.e. line number).

line | // Running on 60 node.

To save space

? line | // Running on 25 node. we leave out the
2 ? line | // Running on 35 node thir:ep:ayx;emstallgs.
3 2 0 line | // Running on 30
3 1 0 | inorder (node)
2 1 inorder (node.left)
3 2 visit (node.value)
3 inorder (node.right)

Running inorder on binary search tree with program
counters for each frame when 30 is visited.

_ Execution stack when the 30 is visited.) .
The maximum depth of the execution stack will be the height of the tree + 1.

Williams College Data Structures & Advanced Programming CSCI 136 23

Inorder Traversal (Second Animation)

line | // Running on 60 node. line 0 @
0 inorder(node)

1 inorder(node.left)
2 visit(node.value)
3 inorder(node.right)

Williams College Data Structures & Advanced Programming CSCI 136 24

line | // Running on 60 node. line 1 @
0 inorder(node)

inorder(node.left)
visit(node.value)
inorder(node.right)

wWN =

Williams College Data Structures & Advanced Programming CSCI 136 25

line | // Running on 66 node.

0 line | // Running on 25 node.
1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

Williams College Data Structures & Advanced Programming CSCI 136 26

line | // Running on 66 node.

0 line | // Running on 25 node.
1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

Williams College Data Structures & Advanced Programming CSCI 136 27

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 16 node.
3 ; 0 inorder(node)
1 inorder(node.left) ,
3 2 visit(node.value) line 0 @
3

inorder(node.right)

Williams College Data Structures & Advanced Programming CSCI 136 28

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 16 node.
3 ; 0 | inorder(node)
1 inorder(node.left) ,
3 2 visit(node.value) line 1 @
3

inorder(node.right)

Williams College Data Structures & Advanced Programming CSCI 136 29

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 16 node.
3 1 0 | inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10

Williams College Data Structures & Advanced Programming CSCI136 30

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 16 node.
3 1 0 | inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10

Williams College Data Structures & Advanced Programming CSCI 136 31

line | // Running on 66 node.

0 line | // Running on 25 node.
1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10

Williams College Data Structures & Advanced Programming CSCI136 32

line | // Running on 66 node.

0 line | // Running on 25 node.
1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25

Williams College Data Structures & Advanced Programming CSCI 136 33

line | // Running on 66 node.

0 line | // Running on 25 node.
1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25

Williams College Data Structures & Advanced Programming CSCI 136 34

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 35 node.
3 1 0 inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25

Williams College Data Structures & Advanced Programming CSCI 136 35

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 35 node.
3 1 0 | inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25

CSCI 136 36

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 (1) line | // Running on 35 node.
3 2 0 line | // Running on 30 node.
3 1 0 inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25

CSCI 136 37

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 (1) line | // Running on 35 node.
3 2 0 line | // Running on 30 node.
3 1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25

CSCI 136 38

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 (1) line | // Running on 35 node.
3 2 0 line | // Running on 30 node.
3 1 0 | inorder(node)
2 1 inorder(node.left)
3 2 visit(node.value)
3 inorder(node.right)

10 25 30

CSCI 136 39

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 (1) line | // Running on 35 node.
3 2 0 line | // Running on 30 node.
3 1 0 | inorder(node)
2 1 inorder(node.left)
3 2 visit(node.value)
3 inorder(node.right)

10 25 30

CSCI 136 40

Williams College Data Structures & Advanced Programming

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 35 node.
3 1 0 | inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30

CSCI 136 41

Williams College Data Structures & Advanced Programming

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 35 node.
3 1 0 | inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30 35

CSCI 136 42

Williams College Data Structures & Advanced Programming

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 35 node.
3 1 0 | inorder(node)

g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30 35

CSCI 136 43

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 (1) line | // Running on 35 node.
3 2 0 line | // Running on 45 node.
3 1 0 inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30 35

CSCI 136 44

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 (1) line | // Running on 35 node.
3 2 0 line | // Running on 45 node.
3 1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30 35

CSCI 136 45

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 ? line | // Running on 35 node.
3 2 0 line | // Running on 45 node.
3 1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30 35 45

CSCI 136 46

Williams College Data Structures & Advanced Programming
= 4 2

line | // Running on 66 node.

? line | // Running on 25 node.
2 ? line | // Running on 35 node.
3 2 0 line | // Running on 45 node.
3 1 0 | inorder(node)
g inorder(node.left)

1
2 visit(node.value)
3 inorder(node.right)

10 25 30 35 45

CSCI 136 47

Williams College Data Structures & Advanced Programming

line | // Running on 66 node.

? line | // Running on 25 node.
2 0 line | // Running on 35 node.
3 1 0 | inorder(node)
2 1 inorder(node.left)
3 2 visit(node.value)
3 inorder(node.right)

10 25 30 35 45

Williams College Data Structures & Advanced Programming CSCI 136 48

line | // Running on 66 node.

0 line | // Running on 25 node.
1 0 | inorder(node)
2 1 inorder(node.left)
3 2 visit(node.value)
3 inorder(node.right)

10 25 30 35 45

Williams College Data Structures & Advanced Programming CSCI 136 49

line | // Running on 66 node. line 1

0 inorder(node)
inorder(node.left)
visit(node.value)
inorder(node.right)

wWN =

10 25 30 35 45

Williams College Data Structures & Advanced Programming CSCI 136 50

line | // Running on 66 node. line 1

0 inorder(node)
inorder(node.left)
visit(node.value)
inorder(node.right)

WN —

10 25 30 35 45 60

Williams College Data Structures & Advanced Programming

Discussion: Iterative Inorder

Could you implement an inorder traversal using iteration instead of recursion?
How exactly do you move from one node to the next node?

Think about this for 1 minutes.
Then discuss it with your neighbor for 2 minutes.

It's actually fairly tricky!
e This is an example where recursive thinking simplifies a task.

CSCI 136 51

CSCI 136 52

Williams College Data Structures & Advanced Programming

Preorder Traversal
In a preorder traversal each node is visited before its children are visited.

i // Preorder from node.

preorder (node)

e @ if node is empty then return
(node.value)

preorder (node.left)

¢ @ @ @ preorder (node.right)

// Run from root.

@ e @ @ preorder (root)

Example binary search tree Pseudocode

The preorder traversal visits the nodes in the following order:
60 25 10 35 30 45 90 75 65 80 95

CSCI 136 53

Williams College Data Structures & Advanced Programming

Postorder Traversal
In a postorder traversal each node is visited after its children are visited.

a // Postorder from node.

postorder (node)
if node is empty then return
postorder (node.left)
postorder (node.right)

@ (node.value)

// Run from root.
postorder (root)

Example binary search tree Pseudocode

The postorder traversal visits the nodes in the following order:
10 30 45 35 25 65 80 75 95 90 60

Williams College Data Structures & Advanced Programming CSCI 136 54

Binary Tree Traversals
The three binary tree traversals are visualized below for the same binary tree.

preorder postorder inorder

The tree binary tree traversals.

Each traversals has a distinct application or generalizations to graph traversal.
e Preorder will be generalized by breadth-first search.
e Postorder will be generalized by depth-first search.
e Inorder visits the nodes of a binary search tree in order.

Williams College Data Structures & Advanced Programming CSCI 136 55

Discussion: Final Thoughts
Are there any other natural ways to traverse a binary tree?

Think about this for 1 minute.

How about a level order where you visit the levels top-down from left-to-right (as in a heap)?
How could you implement that traversal order?

