
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 17
● Iterators and Iterables
● Chapter 8 with Annotations
● Lab 5 — Preview

○ PostScript Language
Iterators

Data Structures & Advanced Programming 2Williams College CSCI 136

Iterators and Iterables

Data Structures & Advanced Programming 3Williams College CSCI 136

Three examples of iterating over a Vector of Integers. How do the last two examples work?
● A Vector is an iterable because it implements Java’s Iterator interface, so it has an iterator() method,

which returns an iterator object that is used inside the for and while loops ...
actually, the AbstractIterator interface from the structure5 package extends the Iterator interface,
and the Vector’s iterator() method returns a VectorIterator which implements AbstractIterator.

Let’s read the book!

Data Structures & Advanced Programming 4Williams College CSCI 136

Chapter 8 with Annotations

⏱

Data Structures & Advanced Programming 5Williams College CSCI 136

● We have studied various container classes
(e.g., arrays, lists, vectors).

● We often want to iterate over, or visit, every
element in a container class once.

● Note that the text suggests that there will
be an Iterator interface.

○ What would this interface contain?

●

Data Structures & Advanced Programming 6Williams College CSCI 136

● Enumeration is an interface that was in
Version JDK1.0 of Java (early 1996) and it
is very simple.

● It has mostly been superseded by the
Iterator interface which was
introduced in Version 1.2 (late 1998).

● The AbstractIterator interface in
the structure package implements
both.

Data Structures & Advanced Programming 7Williams College CSCI 136

● The comment “marks it visited” should not
be taken completely literally.

● It looks like the Vector class must have
an elements() method.

○ Look in Vector.java ...
○ Look in AbstractList.java ...
○ Look in List.java ...
○ Look in Structure.java …

● The iterator() method has similar
ancestry.

Data Structures & Advanced Programming 8Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 9Williams College CSCI 136

● This courses uses data structure from standard
Java’s libraries and the structure package.

● The structure package mirrors parts of Java’s
libraries for educational and practical purposes.

● AbstractIterator is a nice extension of
Java’s structures.

Data Structures & Advanced Programming 10Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 11Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 12Williams College CSCI 136

● The outside world will not have access to
VectorIterator. It belongs to the
structure package and is not public.

● The outside world will treat every
VectorIterator object as if it were
simply an Iterator object.

●

Data Structures & Advanced Programming 13Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 14Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 15Williams College CSCI 136

● The usage of Generator is somewhat
unfortunate in the textbook.

● Java added a concept called a generator in
Java 8 which is used by Stream objects
and the generate method.

Data Structures & Advanced Programming 16Williams College CSCI 136

● This slide and the next two slides provide a
really nice example.

Data Structures & Advanced Programming 17Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 18Williams College CSCI 136

● Notes

Data Structures & Advanced Programming 19Williams College CSCI 136

● This is in reference to the Collatz Conjecture.
● Recommended: Try doing this exercise yourself if you haven’t already done so.
● We’ll work on it together next class.

https://en.wikipedia.org/wiki/Collatz_conjecture

Data Structures & Advanced Programming 20Williams College CSCI 136

Lab 5 — Preview

Data Structures & Advanced Programming 21Williams College CSCI 136

PostScript Language

Data Structures & Advanced Programming 22Williams College CSCI 136

PostScript
PostScript is a text file, a vector graphics file format, and also a programming language.
It was invented by Adobe in the early 1980s.

In Lab 5, you’ll help write a partial non-graphical interpreter for PostScript. All of the needed
information is in the lab handout. The following slides add bonus motivation and context.

The image (left) and program (right) are two different ways of interpreting the same .ps file.
Image by Aaron Santiago while at Simon’s Rock.

https://en.wikipedia.org/wiki/PostScript
https://jabdownsmash.itch.io/

Data Structures & Advanced Programming 23Williams College CSCI 136

Graphic (left) and the code (right) that is used to draw it.
In reality, they are the same artifact (i.e., the same text file) with different interpretations.

Data Structures & Advanced Programming 24Williams College CSCI 136

Change the 4s to 5s and get a new image when you open it again.

Change to 5s

Try coollex

Data Structures & Advanced Programming 25Williams College CSCI 136

Programming Tools
There are two primary tools for programming in PostScript:

● Ghostscript. This is a program for interpreting the PostScript language.
● Ghostview. This is a program for viewing PostScript files as images.

These tools were first released in 1988 (see Wikipedia).

These programs are available in our department’s Unix environment.
In particular, you’ll use ghostscript via gs -DNODISPLAY in the lab.

https://en.wikipedia.org/wiki/Ghostscript

Data Structures & Advanced Programming 26Williams College CSCI 136

Infix Notation
We typically write formulae using infix notation. This means that the binary operators are
written between its two operands.

Computing requires order of operations, and brackets manipulate this order.

Question: How would we write a ternary operator using infix notation.
One solution is to use two symbols for operators as in Java’s ternary operator.

1 + 2 = 3

1 + 2 * 3 = 1 + (2 * 3) = 1 + 6 = 7

(1 + 2) * 3 = 3 * 3 = 9

https://en.wikipedia.org/wiki/%3F:#Java

Data Structures & Advanced Programming 27Williams College CSCI 136

Polish Notation
In Polish Notation the operation is written before its two operands.

Notice that brackets are no longer necessary.

Also, ternary operations can be handled in the same way.
operation operand

1
 operand

2
 operand

3

+ 1 2 = 3

+ * 2 3 1 = + 6 1 = 7

* + 1 2 3 = * 3 3 = 9

Data Structures & Advanced Programming 28Williams College CSCI 136

Reverse Polish Notation (RPN)
In Reverse Polish Notation the operation is written after its two operands.

Most people find this notation to be more natural than Polish Notation.
It can also be easier for parsing programs.

This is how PostScript and other stack-based languages (e.g. Forth) operate.

1 2 + = 3

2 3 * 1 + = 6 1 + = 7

1 2 + 3 * = 3 3 * = 9

Data Structures & Advanced Programming 29Williams College CSCI 136

Evaluating Arithmetic in RPN
Arithmetic expressions in RPN can be evaluated using a stack.
The stack is initially empty and the expression is read from left-to-right.
● Values are pushed onto the stack.
● Binary operators are evaluated by popping the top two values off of the stack.

Example: Evaluate 1 2 3 + 4 + *.

The answer is the only thing on the stack after the expression is computed.
● Popping an empty stack occurs if the expression is not well-formed.
● Terminating with multiple values on the stack occurs if the expression is not well-formed.

3 4

2 2 5 5 9

Stack 1 1 1 1 1 1 9

Expression 1 2 3 + 4 + * 2 3 + 4 + * 3 + 4 + * + 4 + * 4 + * + * *

Data Structures & Advanced Programming 30Williams College CSCI 136

Variables
Variables are created and referenced and redefined as follows.
● There are no keywords in PostScript so be careful!

Variables are actually entries in a dictionary.
● A name is created by / followed by characters do not comprise a number.
● The value of /name is accessed using name (without the slash).
● Name values are stored in dictionaries, which will be discussed later.

/r 0.5 def
/g 0.5 def
/b 0.5 def
r g b
setrgbcolor

/x 1 def % x is now 1
/x 2 def % x is now 2

/x x 1 add def % x is now 3

/if 5 def % don't do this!
/def 5 def % aaahhhhh!

Data Structures & Advanced Programming 31Williams College CSCI 136

Evaluating Functions in RPN
The same principle can be applied to evaluating programs written in RPN.
The stack is initially empty and the program is read from left-to-right.
● Parameters are pushed onto the stack.
● k-ary functions are evaluated by popping the top k values off of the stack.

Example: Suppose max returns the maximum of 3 arguments and neg negates one argument.

Again the stack terminates with the answer iff the program is well-formed.
This method of computing is extremely efficient.

3

2 -2 -2

Stack 1 1 1 1 3

Expression 1 2 neg 3 max 2 neg 3 max neg 3 max 3 max max

Data Structures & Advanced Programming 32Williams College CSCI 136

PostScript Printers
You may have noticed that some printers identify as PostScript printers.
These printers run PostScript programs when they print your documents.

What is going on in there?

What are the pros and cons of running programs for print jobs?
● File size. Programs are often smaller.
● Scalability. Vector graphics can be scaled without loss of quality.
● Security. Malicious code can be embedded into PostScript files or printers.
● Reliability. What if there is an infinite loop in a file being printed?

Data Structures & Advanced Programming 33Williams College CSCI 136

PostScript Fonts
PostScript fonts store the outline of each character in the PostScript language.

The PostScript languages allows arbitrary linear transformations (rotation, scaling, translation)
without any loss of quality. Hence, PostScript fonts can be perfectly rendered at any point size,
orientation, etc.

An individual letter in a PostScript font

https://en.wikipedia.org/wiki/PostScript_fonts
http://merganser.math.gvsu.edu/david/psseminar/

Data Structures & Advanced Programming 34Williams College CSCI 136

Desktop Publishing
PostScript was the file format behind the early advances vector graphic editors and desktop
publishing.

Encapsulated PostScript (.eps) is one of the most widely used formats by publishers. These files
can include a bitmap preview of the image, which allows programs to show the image without
running the included PostScript image.

Adobe Illustrator Adobe InDesign

https://en.wikipedia.org/wiki/Desktop_publishing
https://en.wikipedia.org/wiki/Desktop_publishing
https://en.wikipedia.org/wiki/Encapsulated_PostScript

Data Structures & Advanced Programming 35Williams College CSCI 136

Portable Document Format (PDF)
Adobe created the portable document format (pdf) based-off of the PostScript format.
These files contain three parts:
● A subset of the PostScript language.
● A font embedding system which allows pdf files to contain fonts.
● A method for storing and compressing various elements into a single file.

Here are some YouTube links (link1 link2 link3) for videos on the history of PostScript / pdf.

https://en.wikipedia.org/wiki/Portable_Document_Format
https://youtu.be/1gaCKT_Ncdk
https://youtu.be/guXgBe2wvEA
https://youtu.be/Ayb-KF32uWk

Data Structures & Advanced Programming 36Williams College CSCI 136

Stack Operations
PostScript programs are easier and faster when they avoid creating many variables. Instead
use the stack for saving values and storing intermediate calculations.

It is helpful to practice these commands with the interactive gs shell.
● The pstack command properly prints out the mark values.

% special value
mark

…

% count the values
% above the mark,
% then clear them
counttomark
cleartomark

20 % 20 is on top
10 % 10 is on top
exch % 10 and 20 switch

dup % another copy of 20
pop % one copy removed

% rotate the top n values
% upward k positions
n k roll

% equivalent to exch
2 1 roll

Data Structures & Advanced Programming 37Williams College CSCI 136

Functions
Functions can be defined and called as follows.

Functions are defined and called using names whose values are code blocks.
● Many features of other languages (i.e. automatic local variables) are not present in PostScript functions.
● A code block { ... } is actually an executable array, as discussed later.

The bind keyword replaces the value of each name with its current value.
● If bind isn't used, then setrgbcolor or r or g or b could be redefined before setgrey is called.
● This behavior is often not desired, so don't use bind indiscriminantly.

/setMediumGrey
{
 /r 0.5 def
 /g 0.5 def
 /b 0.5 def
 r g b setrgbcolor
}
bind def
setMediumGrey

/setMediumGrey
{
 0.5 0.5 0.5 setrgbcolor
}
bind def
setMediumGrey

Data Structures & Advanced Programming 38Williams College CSCI 136

Boolean Values and Relational Operators
Boolean values and relational values are illustrated below.

Strings can also be compared using these relational operators.

/b true def

1 1 eq % results in true being pushed onto the stack
1 2 lt % results in true being pushed onto the stack
1 1 lt % results in false being pushed onto the stack
1 1 le % results in true being pushed onto the stack

b false and % results in false being pushed onto the stack
b false or % results in true being pushed onto the stack

Data Structures & Advanced Programming 39Williams College CSCI 136

Text Literals
String literals are created as follows.

(string)
(string with \(parentheses\) inside)
(string with \b backslash inside)
(string with \n new line)
(string with character code 100 in octal \100)

/s 10 string % this creates a blank string with 10 characters

Data Structures & Advanced Programming 40Williams College CSCI 136

If Statements
If statements and if/else statements are created by the following code.

x 1 eq
{
 % code block
}
if

x 1 eq
{
 % true block
}
{
 % false block
}
ifelse

Data Structures & Advanced Programming 41Williams College CSCI 136

Loops
Loops can be created in three ways.
However, they won’t be discussed in the lab.

Note: The for loop is the only one of the loops that modifies the stack directly.
Each successive value of the loop counter goes on the stack before running the code block.
Thus, 1 2 10 {} for completes with 1 3 5 7 9 on the stack.

10
{
 % code block
}
repeat

1 2 10 % first / inc / last
{
 % code block
}
for

{
 …
 exit
 …
}
loop

