Williams College ata Structures & Advanced Programming CSCI136 1

e |terators and lterables
LGCtu e 1 7 e Chapter 8 with Annotations
e Lab 5 — Preview

lterators
o PostScript Language

Williams College Data Structures & Advanced Programming CSCI136 2

Iterators and lterables

Williams College Data Structures & Advanced Programming CSCI136 3
I GNU nano 4.8 Simplelterator.java . . i
import structureb.x; public static void examplel(Vector<Integer> v) {
|public class Simplelterator { for (Integer temp : v) {
System.out.println(temp);
public static void main(String[] args) { }
}

Vector<Integer> v = new Vector<>();

v.add(10);

v.add(20); . . .

v.add(30): public static void example2(Vector<Integer> v) {

example@(v); Iterator<Integer> i = v.iterator();

examplel(v); Integer temp;

example2(v);

} while (i.hasNext()) {

temp = i.next();
System.out.println(temp);

public static void example@(Vector<Integer> v) {

for (int index = 0; index < v.size(); index++) { }
System.out.println(v.get(index)); }

}

} }

Three examples of iterating over a Vector of Integers. How do the last two examples work?

® AvVector is an jterable because it implements Java's Iterator interface, soithas an iterator () method,
which returns an iterator object that is used inside the for and while loops ...
actually, the AbstractIterator interface from the structures5 package extends the Iterator interface,
and the vector's iterator () method returns a vectorIterator which implements AbstractIterator.

Let’s read the book!

Williams College Data Structures & Advanced Programming CSCI 136 4

Chapter 8 with Annotations

Williams College

Chapter 8

Iterators

Concepts:

> Iterators One potato, two potato, three potato, four,
> The AbstractIterator class five potato, six potato, seven potato, more.
> Vector iterators —A child’s iterator
> Numeric iteration

PROGRAMS MOVE FROM ONE STATE TO ANOTHER. As we have seen, this “state”
is composed of the current value of user variables as well as some notion of
“where” the computer is executing the program. This chapter discusses enumer-
ations and iterators—objects that hide the complexities of maintaining the state
of a traversal of a data structure.

Consider a program that prints each of the values in a list. It is important
to maintain enough information to know exactly “where we are” at all times.
This might correspond to a reference to the current value. In other structures
it may be less clear how the state of a traversal is maintained. Iterators help us
hide these complexities. The careful design of these control structures involves,
as always, the development of a useful interface that avoids compromising the
iterator’s implementation or harming the object it traverses.

Data Structures & Advanced Programming CSCI136 5

We have studied various container classes
(e.qg., arrays, lists, vectors).

We often want to iterate over, or visit, every
element in a container class once.

Note that the text suggests that there will

be an Iterator interface.
o What would this interface contain?

Williams College

{

8.1 Java’s Enumeration Interface

Java defines an interface called an Enumeration that provides the user indirect,
iterative access to each of the elements of an associated data structure, exactly
once. The Enumeration is returned as the result of calling the elements method
of various container classes. Every Enumeration provides two methods:

public interface java.util.Enumeration

public abstract boolean hasMoreElements();
// post: returns true iff enumeration has outstanding elements

public abstract java.lang.Object nextElement();
// pre: hasMoreElements
// post: returns the next element to be visited in the traversal

Data Structures & Advanced Programming

CSCI136 6

Enumeration is an interface that was in
Version JDK1.0 of Java (early 1996) and it
is very simple.

It has mostly been superseded by the
Iterator interface which was
introduced in Version 1.2 (late 1998).

The AbstractIterator interfacein

the structure package implements
both.

Structures

)2

Data Structures & Advanced Programming CSCI136 7

Williams College

The hasMoreElements method returns true if there are unvisited elements of
the associated structure. When hasMoreElements returns false, the traversal
is finished and the Enumeration expires. To access an element of the under-
lying structure, nextElement must be called. This method does two things:
it returns a reference to the current element and then marks it visited. Typi-
cally hasMoreElements is the predicate of a while loop whose body processes
a single element using nextElement. Clearly, hasMoreElements is an impor-
tant method, as it provides a test to see if the precondition for the nextElement
method is met.

The following code prints out a catchy phrase using a Vector enumeration:

public static void main(String args[])

{
// construct a vector containing two strings:
Vector<String> v = new Vector<String>();
v.add("Hello");
v.add ("world!");

// construct an enumeration to view values of v

Enumeration i = (Enumeration)v.elements();

while (i.hasMoreElements())

{
// SILLY: v.add(1,"silly");
System.out.print (i.nextElement ()+" ");

}

System.out.println();

}

When run, the following immortal words are printed:

Hello world!

The comment “marks it visited” should not
be taken completely literally.
It looks like the Vvector class must have

an elements () method.
o LookinVvector. java...
o LookinAbstractList.java...
o LookinList.java...
o LookinStructure. java..

The iterator () method has similar
ancestry.

\ Java
Structures

\'/ A

/a7 o

\
=
“

1\

Williams College Data Structures & Advanced Programming

There are some important caveats that come with the use of Java’s Enumera- [N otes
tion construct. First, it is important to avoid modifying the associated structure
while the Enumeration is active or live. Uncommenting the line marked SILLY
causes the following infinite output to begin:

Hello silly silly silly silly silly silly

Inserting the string "silly" as the new second element of the Vector causes it
to expand each iteration of the loop, making it difficult for the Enumeration to
detect the end of the Vector.

Principle 9 Never modify a data structure while an associated Enumeration is
live.

Modifying the structure behind an Enumeration can lead to unpredictable re-
sults. Clearly, if the designer has done a good job, the implementations of both

the Enumeration and its associated structure are hidden. Making assumptions
about their interaction can be dangerous.

Another subtle aspect of Enumerations is that they do not guarantee a par-
ticular traversal order. All that is known is that each element will be visited
exactly once before hasMoreElements becomes false. While we assume that
our first example above will print out Hello world!, the opposite order may
also be possible.

Presently, we develop the concept of an iterator.

Structures

\" //é

Williams College Data Structures & Advanced Programming

8.2 The Iterator Interface

An Iterator is similar to an Enumerator except that the Iterator traverses
an associated data structure in a predictable order. Since this is a behavior and
not necessarily a characteristic of its interface, it cannot be controlled or verified
by a Java compiler. Instead, we must assume that developers of Iterators
will implement and document their structures in a manner consistent with the
following interface:

public interface java.util.Iterator

{
public abstract boolean hasNext();
// post: returns true if there is at least one more value to visit
public abstract java.lang.Object next();
// pre: hasNext()
// post: returns the next value to be visited
}

While the Iterator is a feature built into the Java language, we will choose to
implement our own AbstractIterator class.

public abstract class AbstractIterator<E>
implements Enumeration<E>, Iterator<E>, Iterable<E>
{
public abstract void reset();
// pre: iterator may be initialized or even amid-traversal
// post: reset iterator to the beginning of the structure

public abstract boolean hasNext();
// post: true iff the iterator has more elements to visit

public abstract E get();
// pre: there are more elements to be considered; hasNext ()
// post: returns current value; ie. value next() will return

public abstract E next();
// pre: hasNext()
// post: returns current value, and then increments iterator

This courses uses data structure from standard
Java's libraries and the structure package.
The structure package mirrors parts of Java's
libraries for educational and practical purposes.
AbstractIterator is anice extension of
Java's structures.

public void remove()
// pre: hasNext() is true and get() has not been called
// post: the value has been removed from the structure
{

Assert.fail("Remove not implemented.");

}

final public boolean hasMoreElements ()
// post: returns true iff there are more elements
{

return hasNext();

}

final public E nextElement ()
// pre: hasNext()
// post: returns the current value and "increments" the iterator
{
return next();

}

final public Iterator<E> iterator()
// post: returns this iterator as a subject for a for-loop
{

return this;

}

Williams College

This abstract base class not only meets the Iterator interface, but also im-
plements the Enumeration interface by recasting the Enumeration methods in
terms of Iterator methods. We also provide some important methods that are
not part of general Iterators: reset and get. The reset method reinitializes
the AbstractIterator for another traversal. The ability to traverse a structure
multiple times can be useful when an algorithm makes multiple passes through
a structure to perform a single logical operation. The same functionality can be
achieved by constructing a new AbstractIterator between passes. The get
method of the AbstractIterator retrieves a reference to the current element of
the traversal. The same reference will be returned by the call to next. Unlike
next, however, get does not push the traversal forward. This is useful when
the current value of an AbstractIterator is needed at a point logically distant
from the call to next.

The use of an AbstractIterator leads to the following idiomatic loop for
traversing a structure:

public static void main(String args[])

{
// construct a vector containing two strings:
Vector<String> v = new Vector<String>();
AbstractIterator<String> i;
v.add("Hello");
v.add ("world!");
// construct an iterator to view values of v
for (i = (AbstractIterator<String>)v.iterator(); i.hasNext(); i.next())
{
System.out.print(i.get()+" ");
}
System.out.println();
}

The result is the expected Hello world!

Data Structures & Advanced Programming

Notes

Structures

\34//

Williams College Data Structures & Advanced Programming

8.3 Example: Vector Iterators

For our first example, we design an Iterator to traverse a Vector called, not
surprisingly, a VectorIterator. We do not expect the user to construct Vector-
Iterators directly—instead the Vector hides the construction and returns the
new structure as a generic Iterator, as was seen in the HelloWorld example.
Here is the iterator method:

public Iterator<E> iterator()
// post: returns an iterator allowing one to
// view elements of vector

{

return new VectorIterator<E>(this);

When a Vector constructs an Iterator, it provides a reference to itself (this)
as a parameter. This reference is used by the VectorIterator to recall which
Vector it is traversing.

We now consider the interface for a VectorIterator:

Notes

Str

ucture

Williams College

class VectorIterator<E> extends AbstractIterator<E>

{

public VectorIterator(Vector<E> v)
// post: constructs an initialized iterator associated with v

public void reset()
// post: the iterator is reset to the beginning of the traversal

public boolean hasNext ()
// post: returns true if there is more structure to be traversed

public E get()
// pre: traversal has more elements
// post: returns the current value referenced by the iterator

Data Structures & Advanced Programming

CSCI 136 12

The outside world will not have access to
VectorIterator. It belongs to the
structure package and is not public.
The outside world will treat every
VectorIterator object as if it were
simply an Iterator object.

public E next()
// pre: traversal has more elements
// post: increments the iterated traversal

{

reset();

}

{
current = 0;

}

theVector = v;

public void reset()
// post: the iterator is reset to the beginning of the traversal

As is usually the case, the nonconstructor methods of VectorIterator exactly
match those required by the Iterator interface. Here is how the VectorIter-
ator is constructed and initialized:

protected Vector<E> theVector;
protected int current;

public VectorIterator(Vector<E> v)
// post: constructs an initialized iterator associated with v

J . 4 »
Structures

%

Williams College Data Structures & Advanced Programming

The constructor saves a reference to the associated Vector and calls reset. This
logically attaches the Iterator to the Vector and makes the first element (if
one exists) current. Calling the reset method allows us to place all the resetting
code in one location.

To see if the traversal is finished, we invoke hasNext:

public boolean hasNext ()
// post: returns true if there is more structure to be traversed
{

return current < theVector.size();

}

This routine simply checks to see if the current index is valid. If the index is less
than the size of the Vector, then it can be used to retrieve a current element
from the Vector. The two value-returning methods are get and next:

public E get()
// pre: traversal has more elements
// post: returns the current value referenced by the iterator

{

return theVector.get(current);

public E next()
// pre: traversal has more elements
// post: increments the iterated traversal
{
return theVector.get(current++);

3

The get method simply returns the current element. It may be called arbitrarily
many times without pushing the traversal along. The next method, on the other
hand, returns the same reference, but only after having incremented current.
The next value in the Vector (again, if there is one) becomes the current value.

Notes

Structures

A " Z,

Williams College Data Structures & Advanced Programming

Since all the Iterator methods have been implemented, Java will allow a Y N otes
VectorIterator to be used anywhere an Iterator is required. In particular, it
can now be returned from the iterator method of the Vector class.

Observe that while the user cannot directly construct a VectorIterator (it
is a nonpublic class), the Vector can construct one on the user’s behalf. This
allows measured control over the agents that access data within the Vector.
Also, an Iterator is a Java interface. It is not possible to directly construct an
Iterator. We can, however, construct any class that implements the Iterator
interface and use that as we would any instance of an Iterator.

Since an AbstractIterator implements the Enumeration interface, we may
use the value returned by Vector’s iterator method as an Enumeration to
access the data contained within the Vector. Of course, treating the Vector-
Iterator as an Enumeration makes it difficult to call the AbstractIterator
methods reset and get.

\ Java
Structures

\"Z
71N

Williams College

8.4 Example: Rethinking Generators

In Section 7.2/ we discussed the construction of a class of objects that gener-
ated numeric values. These Generator objects are very similar to Abstract-
Iterators—they have next, get, and reset methods. They lack, however, a
hasNext method, mainly because of a lack of foresight, and because many se-
quences of integers are infinite—their hasNext would, essentially, always return
true.

Generators are different from Iterators in another important way: Gen-
erators return the int type, while Iterators return Objects. Because of this,

the Iterator interface is more general. Any Object, including Integer values,
may be returned from an Iterator.

In this section we experiment with the construction of a numeric iterator—a
Generator-like class that meets the Iterator interface. In particular, we are
interested in constructing an Iterator that generates prime factors of a specific

integer. The PFIterator accepts the integer to be factored as the sole parameter
on the constructor:

import structureb.AbstractIterator;
public class PFGenerator extends AbstractIterator<Integer>
{

// the original number to be factored

protected int base;

public PFGenerator(int value)
// post: an iterator is constructed that factors numbers

{

base = value;
reset();

Data Structures & Advanced Programming

The usage of Generator is somewhat
unfortunate in the textbook.

Java added a concept called a generator in
Java 8 which is used by stream objects
and the generate method.

Williams College Data Structures & Advanced Programming

The process of determining the prime factor involves reducing the number by a o Th IS Sl |d ea nd the next two s I |d es pFOVId ead
factor. Initially, the factor f starts at 2. It remains 2 as long as the reduced value .
is even. At that point, all the prime factors of 2 have been determined, and we rea I Iy nice exam ple
next try 3. This process continues until the reduced value becomes 1.

Because we reduce the number at each step, we must keep a copy of the
original value to support the reset method. When the iterator is reset, the
original number is restored, and the current prime factor is set to 2.

// base, reduced by the prime factors discovered
protected int n;

// the current prime factor

protected int f;

public void reset()
// post: the iterator is reset to factoring the original value

{
n = base;
// initial guess at prime factor
f = 2;

}

If, at any point, the number n has not been reduced to 1, prime factors
remain undiscovered. When we need to find the current prime factor, we first
check to see if £ divides n—if it does, then f is a factor. If it does not, we simply
increase f until it divides n. The next method is responsible for reducing n by a
factor of f.

Structures

\" //é

Williams College

public boolean hasNext ()
// post: returns true iff there are more prime factors to be considered
{

return f <= n; // there is a factor <= n

public Integer next()
// post: returns the current prime factor and "increments" the iterator
{

Integer result = get(); // factor to return

n /= f; // reduce n by factor

return result;

public Integer get()

// pre: hasNext()

// post: returns the current prime factor

{
// make sure f is a factor of n
while (f <= n && n)f !'= 0) f++;
return f;

Data Structures & Advanced Programming

Notes

CSCI 136 17

Williams College Data Structures & Advanced Programming

We can now write a program that uses the iterator to print out the prime °® N Ot es
factors of the values presented on the command line of the Java program as it

is run:

public static void main(String[largs)

{

// for each of the command line arguments
for (int i = 0; i < args.length; i++)
{
// determine the value
int n = Integer.parselnt(args[il);
PFGenerator g = new PFGenerator(n);
System.out.print(n+": ");
// and print the prime factors of n
while (g.hasNext()) System.out.print(g.next()+" ");
System.out.println();

}

For those programmers that prefer to use the hasMoreElements and next-
Element methods of the Enumeration interface, those methods are automat-
ically provided by the AbstractIterator base class, which PFGenerator ex-

tends.

Structures

\

e

Williams College

Data Structures & Advanced Programming

CSCI 136 19

Exercise 8.1 The 3n + 1 sequence is computed in the following manner. Given a
seed n, the next element of the sequence is 3n + 1 if n is odd, or n/2 if n is even.
This sequence of values stops whenever a 1 is encountered; this happens for all

seeds ever tested. Write an Iterator that, given a seed, generates the sequence of
values that ends with 1.

e Thisis inreference to the Collatz Conjecture.

e Recommended: Try doing this exercise yourself if you haven't already done so.
e We'll work on it together next class.

\ Structures

https://en.wikipedia.org/wiki/Collatz_conjecture

Williams College Data Structures & Advanced Programming CSCI136 20

Lab 5 — Preview

Williams College Data Structures & Advanced Programming CSCI 136 21

PostScript Language

CSCI 136 22

Williams College Data Structures & Advanced Programming

PostScript
PostScript is a text file, a vector graphics file format, and also a programming language.
It was invented by Adobe in the early 1980s.

AN

The image (left) and program (right) are two different ways of interpreting the same .ps file.
Image by Aaron Santiago while at Simon’s Rock.

In Lab 5, you'll help write a partial non-graphical interpreter for PostScript. All of the needed
information is in the lab handout. The following slides add bonus motivation and context.

smashball.ps

https://en.wikipedia.org/wiki/PostScript
https://jabdownsmash.itch.io/

Williams College Data Structures & Advanced Programming CSCI 136 23

T choose def
/R 1.5 inch def
V inch def
/W 0 def
JONE {fill} def col swap2
/ZERO {stroke} def

I RV W {ONE} {ZERO} bitwheelinout

Graphic (left) and the code (right) that is used to draw it.
In reality, they are the same artifact (i.e., the same text file) with different interpretations.

Williams College

LT
qu——

Uiy
o iy
N \\\\\\\\\\\\‘“\\\lllllll /ﬂ{};,’;lll//',',”
%\\\\\\\\\\\\‘\\\‘Q\‘\mm i z///

\ I’ 4
\\\\\\\Q\\{\\\\\\ Wil

i/
NN
i\\\\\\\\\\\\ I /////////Z//

NN
7 n
7N
//llld AU Y

4
TR

hy

Wy, Uiy, SN

Wtry U
'/IIII,,,”’ T

T

m,
Uy,

Data Structures & Advanced Programming

Try coollex

S 4 def
4 def

add def
T choose def
R 1.5 inch def
V. 1 inch def
/W 0 def
JONE {fill} def
/ZERO {stroke} def

Change the 4s to 5s and get a new image when you open it again.

CSCI 136 24

CSCI 136 25

Programming Tools
There are two primary tools for programming in PostScript:

e Ghostscript. This is a program for interpreting the PostScript language.
e Ghostview. This is a program for viewing PostScript files as images.

These tools were first released in 1988 (see Wikipedia).

Ql‘]()slscript"’

|-

These programs are available in our department’s Unix environment.
In particular, you'll use ghostscript via gs -DNODISPLAY in the lab.

https://en.wikipedia.org/wiki/Ghostscript

CSCI 136 26

Infix Notation
We typically write formulae using infix notation. This means that the binary operators are

written between its two operands.
1+2=3
142*3=14+2*3)=1+6=7

(1+2)*3=3*3=9

Computing requires order of operations, and brackets manipulate this order.

Question: How would we write a ternary operator using infix notation.
One solution is to use two symbols for operators as in Java's ternary operator.

https://en.wikipedia.org/wiki/%3F:#Java

CSCI 136 27

Polish Notation
In Polish Notation the operation is written before its two operands.

+12=3
+*231=+61=7

*+123=*33=9

Notice that brackets are no longer necessary.

Also, ternary operations can be handled in the same way.

operation operand, operand, operand,

CSCI 136 28

Reverse Polish Notation (RPN)
In Reverse Polish Notation the operation is written after its two operands.

12+=3
23*1+=61+=7

12+3*=33*=9

Most people find this notation to be more natural than Polish Notation.
It can also be easier for parsing programs.

This is how PostScript and other stack-based languages (e.g. Forth) operate.

Williams College Data Structures & Advanced Programming

Evaluating Arithmetic in RPN
Arithmetic expressions in RPN can be evaluated using a stack.
The stack is initially empty and the expression is read from left-to-right.
e Values are pushed onto the stack.
e Binary operators are evaluated by popping the top two values off of the stack.

Example: Evaluate 123 +4 +*, 3
2 2 5
Stack 1 1 1 1
Expression 12 3 4+ 4 + % 2 3 + 4 + * 3+ 4 + * |+ 4 + * 4 + * n

The answer is the only thing on the stack after the expression is computed.
e Popping an empty stack occurs if the expression is not well-formed.
e Terminating with multiple values on the stack occurs if the expression is not well-formed.

CSCI 136 29

Williams College

Variables

Variables are created and referenced and redefined as follows.
There are no keywords in PostScript so be careful!

/r 0.5 def /x 1 def $ x 1is
/g 0.5 def /x 2 def $ x 1is
/b 0.5 def
rghb /x x 1 add def %
setrgbcolor

Data Structures & Advanced Programming

now 1
now 2

x 1s now 3

Variables are actually entries in a dictionary.

A name is created by / followed by characters do not comprise a number.

/if 5 def %
/def 5 def %

The value of /name is accessed using name (without the slash).
Name values are stored in dictionaries, which will be discussed later.

don't do this!
aaahhhhh!

CSCI 136 30

Williams College dvanced Programming CSCI136 31

Evaluating Functions in RPN

The same principle can be applied to evaluating programs written in RPN.
The stack is initially empty and the program is read from left-to-right.
e Parameters are pushed onto the stack.
e k-ary functions are evaluated by popping the top k values off of the stack.

Example: Suppose max returns the maximum of 3 arguments and neg negates one argument.

2 -2 -2
Stack 1 1 1 1 3
Expression 1 2 neg 3 max 2 neg 3 max | neg 3 max | 3 max max

Again the stack terminates with the answer iff the program is well-formed.
This method of computing is extremely efficient.

Williams College Data Structures & Advanced Programming CSCI136 32

PostScript Printers

You may have noticed that some printers identify as PostScript printers.
These printers run PostScript programs when they print your documents.

What is going on in there?

What are the pros and cons of running programs for print jobs?
File size. Programs are often smaller.

Scalability. Vector graphics can be scaled without loss of quality.

Security. Malicious code can be embedded into PostScript files or printers.
Reliability. What if there is an infinite loop in a file being printed?

Williams College Data Structures & Advanced Programming CSCI 136 33

PostScript Fonts
PostScript fonts store the outline of each character in the PostScript language.

Postscript Font
(Adobe Caslon Regular)

An individual letter in a PostScript font

The PostScript languages allows arbitrary linear transformations (rotation, scaling, translation)
without any loss of quality. Hence, PostScript fonts can be perfectly rendered at any point size,
orientation, etc.

https://en.wikipedia.org/wiki/PostScript_fonts
http://merganser.math.gvsu.edu/david/psseminar/

Williams College

Desktop Publishing

Data Structures & Advanced Programming

CSCI 136 34

PostScript was the file format behind the early advances vector graphic editors and desktop
publishing.

Adobe lllustrator Adobe InDesign

Encapsulated PostScript (.eps) is one of the most widely used formats by publishers. These files

can include a bitmap preview of the image, which allows programs to show the image without
running the included PostScript image.

https://en.wikipedia.org/wiki/Desktop_publishing
https://en.wikipedia.org/wiki/Desktop_publishing
https://en.wikipedia.org/wiki/Encapsulated_PostScript

Williams College

Portable Document Format (PDF)
Adobe created the portable document format (pdf) based-off of the PostScript format.
These files contain three parts:

e A subset of the PostScript language.

e A font embedding system which allows pdf files to contain fonts.

e A method for storing and compressing various elements into a single file.

Adone® PDF

Here are some YouTube links (link1 link2 link3) for videos on the history of PostScript / pdf.

CSCI 136 35

https://en.wikipedia.org/wiki/Portable_Document_Format
https://youtu.be/1gaCKT_Ncdk
https://youtu.be/guXgBe2wvEA
https://youtu.be/Ayb-KF32uWk

Williams College Data Structures & Advanced Programming CSCI 136 36

Stack Operations

PostScript programs are easier and faster when they avoid creating many variables. Instead
use the stack for saving values and storing intermediate calculations.

% special value 20 % 20 is on top % rotate the top n values
mark 10 % 10 is on top % upward k positions

exch % 10 and 20 switch n k roll

dup % another copy of 20 % equivalent to exch
% count the wvalues pop % one copy removed 2 1 roll

o°

above the mark,
% then clear them
counttomark
cleartomark

It is helpful to practice these commands with the interactive gs shell.
e The pstack command properly prints out the mark values.

Williams College Data Structures & Advanced Programming CSCI 136 37

Functions
Functions can be defined and called as follows.

/setMediumGrey /setMediumGrey
{ {
/r 0.5 def 0.5 0.5 0.5 setrgbcolor
/g 0.5 def \
/b 0.5 def bind def
r g b setrgbcolor setMediumGrey
}
bind def
setMediumGrey

Functions are defined and called using names whose values are code blocks.
e Many features of other languages (i.e. automatic local variables) are not present in PostScript functions.
e Acodeblock{...}is actually an executable array, as discussed later.

The bind kevword replaces the value of each name with its current value.

Williams College

/b true def

eq
1t
1t
le

R e
R S

o

o\® o o°

o\°

false and

b false or

results
results
results
results

in
in
in
in

% results
% results

Data Structures & Advanced Programming

Boolean Values and Relational Operators
Boolean values and relational values are illustrated below.

true being pushed onto the stack
true being pushed onto the stack
false being pushed onto the stack
true being pushed onto the stack

in false being pushed onto the stack
in true being pushed onto the stack

Strings can also be compared using these relational operators.

CSCI 136 38

Williams College Data Structures & Advanced Programming CSCI 136 39

Text Literals
String literals are created as follows.

(string)

(string with \ (parentheses\) inside)

(string with \b backslash inside)

(string with \n new line)

(string with character code 100 in octal \100)

Q

/s 10 string % this creates a blank string with 10 characters

Williams College

If Statements

If statements and if/else statements are created by the following code.

x 1
{

Q

2

o

}
if

eq

code block

Data Structures & Advanced Programming

x 1 eq
{

% true block
}
{

% false block
}

ifelse

CSCI 136 40

Williams College

Data Structures & Advanced Programming

Loops

Loops can be created in three ways.
However, they won't be discussed in the lab.

10 1 2 10 % first / inc / last {
{ {
% code block % code block exit
} } .
repeat for }
loop

Note: The for loop is the only one of the loops that modifies the stack directly.

Each successive value of the loop counter goes on the stack before running the code block.

Thus,1 2 10 {} forcompleteswithl 3 5 7 9 onthe stack.

CSCI 136 41

