
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 16 ● Ordered Structures
● Priority Queues
● HeapsOrdered Structures

Data Structures & Advanced Programming 2Williams College CSCI 136

Ordered Structures

Data Structures & Advanced Programming 3Williams College CSCI 136

There are many benefits to storing data in a specific order, with some examples listed below.
1. Finding a particular value via binary search in O(log(n))-time.

In this case, the order or priorities are part of the data.
2. Efficient access to the most important thing in O(1)-time.

In this case, the priorities are not part of the data. Instead the data has an associated priority.

We save time by having the data in order.
But we need to spend time (and possibly space) to put the data in order and/or keep it in order.

Which graphical elements should have drawing priority?
The priorities are added to the data.

Ordered Structures

Dictionary and Phone Book 😂
The ordering or priorities are part of the data.

Data Structures & Advanced Programming 4Williams College CSCI 136

Our basic linear data structures — arrays, linked lists, vectors — can be used for ordered data.
● We keep the data in sorted order (i.e., the first or highest priority item is first).

Let’s focus on the efficiency of the following operations.
● Insert. Insert data with a given priority. (The priority may or may not be part of the data).
● Find. Return the data with the highest priority.
● Remove. Remove the data with the highest priority.

Discussion: Ordered Arrays, Linked Lists, Vectors

● Array. The existing order helps us quickly find where to insert. Does that help with insert’s run-time?
● Array. Does it matter if you store the highest value at the front or back of the array?
● Array. Does it matter if we use linear indexing or circular index? (see previous lecture on queues)
● Linked list. The linked structure helps us insert nodes quickly. Does that help with insert’s run-time?
● Linked list. Does it matter what type of linked list is used?

Think about this for 2 minutes.
Then discuss it with your neighbor for 3 minutes.

Insert Find Remove

Array

Vector

Linked List

Run-times where n is the number of data values
that are currently in the structure.

Insert Find Remove

Array O(n) O(1) O(n) or O(1)
linear or circular

Vector O(n) O(1) O(n)

Linked List O(n) O(1) O(1)

Data Structures & Advanced Programming 5Williams College CSCI 136

Priority Queues

Data Structures & Advanced Programming 6Williams College CSCI 136

A priority queue is a data structure that supports the following operations.
● Insert. Insert data with a given priority. (The priority may or may not be part of the data).
● Find. Return the data with the highest priority.
● Remove. Remove the data with the highest priority.

These are the minimum requirements.
In practice, priority queues usually contain many more operations.

Priority Queue

We want to improve upon the O(n)-time run-time for Insert.
● O(1)-time for every operation would be fantastic, but perhaps unrealistic.
● O(log(n))-time is a realistic goal for every operation. How can halving help us?

Run-times

Insert Find Remove

Array O(n) O(1) O(1) or O(n)

Vector O(n) O(1) O(1)

Linked List O(n) O(1) O(1)

Data Structures & Advanced Programming 7Williams College CSCI 136

Heaps

Data Structures & Advanced Programming 8Williams College CSCI 136

Binary Heaps
A binary heap is a binary tree whose node values satisfy two rules:
1. The value of a node is less than or equal to the values of its children.
2. The binary tree is full meaning that all levels except the bottom are full and the bottom

level has all of the nodes as far to the left as is possible.

We’ll implement a binary heap with the following: where n is the number of nodes currently in the heap
(a) Insert. Insert a new value in log(n)-time.
(b) Find-min. Return the minimum value in constant-time.
(c) Delete-min. Remove the minimum value in log(n)-time.
This will allow us to implement a priority queue with O(log(n))-time operations.
Note: For simplicity we use “values” when discussing heaps; in a priority queue the ordering is based on the “priorities”.

Another binary heap with the same data.A binary heap.

1

7 4

8 9 5

1

4 5

9 8 7

Data Structures & Advanced Programming 9Williams College CSCI 136

Exercise: Identify the Heap(s)?!
Which of the following is a heap?

1

8 4

7 9 5

1

4 5

9 88

Wrong
order:
8 > 7

Wrong
shape

Data Structures & Advanced Programming 10Williams College CSCI 136

Operations

Data Structures & Advanced Programming 11Williams College CSCI 136

A heap (or binary heap) is a data structure that supports the following operations.
● insert. Insert a value.
● find-min. Return the minimum value.
● delete-min. Remove the minimum value.

These are the minimum requirements.
In practice, heaps often contain many more operations.

Heap Operations

We’ll outline how the conceptual steps involved in the operations using a tree structure.
The actual implementation is made easier by instead using an array in a clever way.

Our run-time goals for two different implementations of a heap.
A priority queue can use insert for Insert, find-min for Find, and delete-min for Remove.
So the heap would spend more time for removing and less time for inserting. Overall, it’s an improvement.

insert find-min delete-min

Tree O(log(n)) O(1) O(log(n))

Array O(log(n)) O(1) O(log(n))

Data Structures & Advanced Programming 12Williams College CSCI 136

Insert into Heap
How can we implement the insert operation in a heap?
● We start by inserting the value into the next location, so the heap’s shape is correct.
● Then we fix the relative orders by “bubbling” the value up as needed.

The insert operation can be implemented in worst-case O(log n)-time.
● The heap always has log n height, where n is the number of elements currently in the heap.
● We’d still need to figure out exactly how to store and modify this type of tree structure.

Fix the heap by bubbling upward.
Notice that each swap doesn’t cause other

ordering problems.

c

g v

r i x y

t kw

Before inserting d. The heap has the right shape but d is
not in the right place.

c

g v

r i x y

t kw d

c

d v

r g x y

t kw i

Data Structures & Advanced Programming 13Williams College CSCI 136

Deletion from Heap
How can we implement the delete-min operation in a heap? Note that deleting its last value is easy.

● We swap the top value with the last value, then delete it. The heap is in the correct shape.
● Then we fix the relative orders by “bubbling” the swapped value down as needed.

The delete-min operation can be implemented in worst-case O(log n)-time.
● The heap always has log n height, where n is the number of elements currently in the heap.
● We’d still need to figure out exactly how to store and modify this type of tree structure.

Fix the heap by bubbling k down as needed.
Only swap with the smaller child.

c

g d

r i e f

t kw

Before deleting c.
We will swap c and k, then delete c.

The heap has the right shape,
but k is not in the correct location.

k

g d

r i e f

t w

d

g e

r i k f

t w

Data Structures & Advanced Programming 14Williams College CSCI 136

We conceptualized a heap using a tree-like structure.
and our approach to the insert and delete-min
operations are based on this structure.

It is possible to implement a heap using this tree-like
structure. The implementation uses nodes and links
(i.e., references) in a similar manner to linked lists.

Each node contains a value
and references to its parent, left-child, and right-child.

Each node object contains the following information:
● Its value.
● A reference to its parent.
● A reference to its left-child.
● A reference to its right-child.

We also maintain a reference to the heap’s top node.
● This is often referred to as the root.
● It is the only node whose parent is set to null.

Tree Implementation c

g d

r i e f

t kw

How do we implement this structure?

N.value Node N

N.parent

N.rightN.left

Data Structures & Advanced Programming 15Williams College CSCI 136

Array Implementation

Data Structures & Advanced Programming 16Williams College CSCI 136

We conceptualized a heap using a tree-like structure, and
our approach to the insert and delete-min
operations are based on this structure.

Could implement a heap with an array? Links become implicit.

Two different ways of organizing the array.

Goals and requirements for an array implementation:
● Simpler than the tree implementation.
● Navigate the structure with the same speed.

○ From a given node in the tree structure, we can access the
parent, as well as the left-child and right-child, in O(1)-time
by using the associated links.

○ From a given index in the array, we would need to be able
to access the corresponding indices of the parent, as well
as the left-child and right-child in O(1)-time.

● Must avoid additional work (e.g., moving values).

We’ll consider two ways of organizing the array.

Array Implementation c

g d

r i e f

t kw

How can we store the heap’s values in an array?
What order should they be placed in?

t r w g i k c e d f …

c g d r i e f t w k …

Data Structures & Advanced Programming 17Williams College CSCI 136

8 4 5 1 9 7 11

0 1 2 3 4 5 6

1

3

4 7

1 5

8 5 9 11

0 2 4 6

Array Organization #1: Squish Downard (Incorrect)
Let’s first try organizing the array by squishing the tree’s nodes downward into the array.

Bad news: When the heap grows from size 2n-1 to 2n every value in the array may need to move.

A heap of n = 7 values stored in an array with implicit links.

10 8 4 5 1 9 7 11

0 1 2 3 4 5

1

4

4 7

2 6

Adding one more value causes every value to move.

8 5 9 11

1 3 5 7

10

0

Data Structures & Advanced Programming 18Williams College CSCI 136

1 4 7 8 5 9 11

0 1 2 3 4 5 6

1

3

4 7

1 5

8 5 9 11

0 2 4 6

Array Organization #2: Top-to-Bottom Left-to-Right (Correct)
Next let’s try organizing the array row-by-row from top-to-bottom and left-to-right on each row.

Good news: There is no added work associated with adding values. Can we navigate efficiently?

A heap of n = 7 values stored in an array with implicit links.

1 4 7 8 5 9 11 10

0 1 2 3 4 5

1

4

4 7

2 6

Adding one more value doesn’t force any values to move.

8 5 9 11

1 3 5 7

10

0

Data Structures & Advanced Programming 19Williams College CSCI 136

To actually implement these heap operations with an array, we need to be able to (efficiently)
convert between the indices of each node and its parent / children.
If the current index is j, then what is the index of the following:
● Its left-child?
● Its right-child?
● Its parent?

Discussion: Navigating the Array by Computing Parent and Child Indices

Answers:
● The left-child of index j is 2j + 1. For example, the left-child of index 2 is index 2j + 1 = 5.
● The right-child of index j is 2j + 2. For example, the right-child of index 2 is index 2j + 2 = 6.
● The parent of index j is index ⌊(j - 1) / 2⌋ where ⌊ ⌋ denotes floor (i.e. round down as in Java).

For example, the parent of index 6 is ⌊(j - 1) / 2⌋ = ⌊(6 - 1) / 2⌋ = ⌊5 / 2⌋ = 2.

Think about this for 1 minutes.
Then discuss it with your neighbor for 1 minute. A binary heap and its array indices.

1

7 4

8 9 5

0

1 2

543 8 6

Data Structures & Advanced Programming 20Williams College CSCI 136

Applications

Data Structures & Advanced Programming 21Williams College CSCI 136

Applications
Heaps have many applications including:
1. Heap sort in O(n log(n))-time.
2. Efficient implementation of priority queues.

