
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 15

● Queues
○ Metaphors

● Array Implementations
○ Linear Indexing
○ Circular Indexing

● Linked-List Implementations
○ Singly-Linked
○ Singly-Linked with Tail

(Circular Singly-Linked)

Queues

Data Structures & Advanced Programming 2Williams College CSCI 136

Queues

Data Structures & Advanced Programming 3Williams College CSCI 136

Queue
In a queue the only element that can be accessed is the earliest added element.
We refer to it using the acronym FIFO for First-In First-Out.

Elements are added to the back of a queue. It is also known as enqueue. It is add in Linear.

Elements are removed from the front of a queue. It is also known as dequeue. It is remove in Linear.

A queue of some human objects or elements.

Data Structures & Advanced Programming 4Williams College CSCI 136

In this lecture, we’ll consider various implementations of queues.

1. We’ll start with the most obvious implementations involving arrays and linked lists, then we will
show how additional thought can lead to more efficient and/or concise implementations.

2. When examining stacks, we considered Java code in structures package. In this lecture,
we’ll instead focus on pseudocode. There is no single “best” overall format for pseudocode.
For example, if A is an array, then “A.size” or “|A|” or “n = size of A” are all reasonable choices.
However, you should keep in mind the following goal:
○ A programmer should be able to translate pseudocode into their language of choice without having to know the

intricacies of a particular language, and without having to think too hard.

For example, “A = new Vector<Integer>(10)“ is too language dependent, while “m = the number
of distinct values in A” is probably too high-level for this course (i.e., how is m computed?).

We’ll also consider several different queueing metaphors that can be helpful when comparing
different implementations.

Implementations in Pseudocode

Data Structures & Advanced Programming 5Williams College CSCI 136

Metaphors

Data Structures & Advanced Programming 6Williams College CSCI 136

Metaphors for Queues
In each situation below, the people are served in the order that they arrive, so they are examples
of queues. However, there are differences between the situations.

These situations are suggestive of different types of implementations.
● What is moved or updated after each enqueue or dequeue?

Taking and making orders
at a restaurant bar.

Waiting for cheese at Big Y
using a ticket server.

A typical line-up that is issued at
the movies or a grocery store.

Data Structures & Advanced Programming 7Williams College CSCI 136

Array-Based Implementations

Data Structures & Advanced Programming 8Williams College CSCI 136

Array Implementation #1
 Linear Indexing

Data Structures & Advanced Programming 9Williams College CSCI 136

Array Implementation (Line-Up)
The most obvious implementation with an array A is similar to a line-up queue (e.g., for movies).
● The front of the queue is in A[0]. The back of the queue is in A[num-1].
● When dequeuing, all of the values move to the left in the array.

What happens when the maximum size max is reached?
Let’s decide to not resize the array (since a Vector-based implementation will do that).

Dequeue removes element from the front.
Number of elements is num = 4.

Maximum size is max = 1000.
Number of elements is num = 4.

Enqueue adds element to the back.
Number of elements is num = 5.

a b c d ... a b c d e ... b c d e ...

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Data Structures & Advanced Programming 10Williams College CSCI 136

Pseudocode: Enqueue and Dequeue in an Array with Linear-Indexing
Below is pseudocode for adding and removing an element from a queue using an array in which
the indices are used linearly.

How much time do these operations take?
● Enqueue is O(1)-time.
● Dequeue is O(n)-time where n is the number of values in the queue (i.e., n = num).

Removing a value from the queue.Adding a value to the queue.

 // A is an array A[0]...A[max-1] of size max.
 // num is the number of values in the queue.

 function dequeue()

 // Error if there are no values in the array.
 if num == 0 then
 return error

 // Remember the first value and then move
 // all of the values forward in the array.
 firstValue = A[0]
 for i = 0, 1, …, num-2 do
 A[i] = A[i+1]

 // Decrement num and return the old first value.
 num -= 1
 return firstValue

 // A is an array A[0]...A[max-1] of size max.
 // num is the number of values in the queue.

 function enqueue(newValue)

 // Error if there is no room in the array.
 if num == max then
 return error

 // Add the value in the next space.
 A[num] = newValue

 // Increment num.
 num += 1

Data Structures & Advanced Programming 11Williams College CSCI 136

Our first array-based implementation had the following run-times.
● O(1)-time for enqueue (so long as there is space in the array).
● O(n)-time for dequeue.

Discussion: Improving the Array-Based Implementation

Can we create an improved array-based implementation that has the following run-times:
● O(1)-time for enqueue (so long as there is space in the array).
● O(1)-time for dequeue.

Hint: Allow the front of the queue to move away from A[0] and/or think about a ticket taker.

Think about this for 1 minute.
Then discuss it with your neighbor for 2 minutes.

Data Structures & Advanced Programming 12Williams College CSCI 136

Array Implementation #2
 Circular Indexing

Data Structures & Advanced Programming 13Williams College CSCI 136

Array Implementation (Ticket Server)
A ticket server keeps track of a queue in a different way.
● When enqueuing, it adds values to the back (except when wrapping around; see note below).
● When dequeing, it increments the starting position, and the other values don’t move.

What happens when the numbers run out?
● In the ticket server, the numbers wrap around and the next ticket number is 1.
● In the array, the new values are now added to the front of the array.

We refer to this as circular indexing.

Remove element from the front.
Number of values in queue is 403.

Maximum size is 1000.
Number of values in queue is 403.

Add element to the end.
Number of values in queue is 404.

a b ... x a b ... x y (a) b ... x y

ticket
854

ticket
855

ticket
855

453

... 452 453 ... 853 854 452 453 ... 853 854 452 453 ... 853 854 ...

Data Structures & Advanced Programming 14Williams College CSCI 136

Pseudocode: Enqueue and Dequeue in an Array with Circular-Indexing
Below is pseudocode for adding and removing an element from a queue using an array in which
the indices are used circularly.

How much time do these operations take?
● Enqueue is O(1)-time.
● Dequeue is O(1)-time.

Removing a value from the queue.Adding a value to the queue.

 // A is an array A[0]...A[max-1] of size max.
 // num is the number of values in the queue,
 // and they are stored in A[first]...A[last]
 // where last = (first + num - 1) % max.

 function dequeue()

 // Error if there are no values in the array.
 if num == 0 then
 return error

 // Remember the first value and then
 // increment the first index circularly.
 firstValue = A[first]
 first = (first + 1) % max

 // Decrement num and return the old first value.
 num -= 1
 return firstValue

 // A is an array A[0]...A[max-1] of size max.
 // num is the number of values in the queue,
 // and they are stored in A[first]...A[last]
 // where last = (first + num - 1) % max.

 function enqueue(newValue)

 // Error if there is no room in the array.
 if num == max then
 return error

 // Increment last circularly, then
 // add the value in the new last position.
 last = (last + 1) % max
 A[last] = newValue

 // Increment num.
 num += 1

Data Structures & Advanced Programming 15Williams College CSCI 136

Efficiency for Queue Operations with Arrays
The efficiency of the two main queue operations for our two array-based implementations.

Recall that we do not allow the array to be resized in these implementations.
If we did, then the enqueue times would need to be adjusted.
Alternatively, we could use a Vector instead of an array.

Big-O measurements for a queue containing n elements.

Array
(linear indices)

Array
(circular indices)

enqueue O(1)-time O(1)-time

dequeue O(n)-time O(1)-time

Data Structures & Advanced Programming 16Williams College CSCI 136

Linked-List Implementations

Data Structures & Advanced Programming 17Williams College CSCI 136

Metaphor for Linked List Based Queues
In this situation, the bartender and/or patrons keep track of who arrives after whom, so it
suggests an implementation using a linked list.
● The head is the front of the list (i.e. first person).

Which type of linked list should we use when implementing a queue?

Taking orders at a restaurant bar.

Data Structures & Advanced Programming 18Williams College CSCI 136

Let’s aim for the simplest implementation that has the following run-times.
● O(1)-time for enqueue.
● O(1)-time for dequeue.

Discussion: Linked List-Based Implementations

Consider each of the following linked list types.
● Singly-linked with a head reference.
● Singly-linked with a head and tail reference. This is similar to a circular linked list.
● Doubly-linked list with head and tail reference.

Which is the simplest that will allow for the above run-times?

Discuss this with your neighbor for 3 minutes.

Data Structures & Advanced Programming 19Williams College CSCI 136

Queue in a Linked List
Taking orders at a restaurant bar is similar to storing a queue in a linked list.
Should we keep track of the tail?

If we don’t maintain the tail, then we’ll need to recompute it on every enqueue operation.

Remove element from the front.
Number of elements is 3.Number of elements is 3.

Add element to the end.
Number of elements is 4.

c a
b

ba c

c a
b

ba c

c bd d

d ba c d

head head head

tail tail tail

Data Structures & Advanced Programming 20Williams College CSCI 136

Pseudocode: Enqueueing in Linked List

Notice that the tail variable helps us enqueue faster.
Are there any errors in the code or any edge cases that are missing?

Linked list without tail

// Each node has .value and .next
// head is the first node.

function enqueue(newValue)

 // Create the new node
 newNode = new Node()
 newNode.value = newValue
 newNode.next = null

 // Find the end of the list
 temp = head
 while temp.next != null do
 temp = temp.next

 // Add the new node after the last node
 temp.next = newNode

// Each node has .value and .next
// head is the first node.
// tail is the last node.

function enqueue(newValue)

 // Create the new node
 newNode = new Node()
 newNode.value = newValue
 newNode.next = null

 // Add the new node after tail
 tail.next = newNode
 tail = newNode

Below is pseudocode for adding an element to a queue either using or not using tail.

Linked list with tail

Data Structures & Advanced Programming 21Williams College CSCI 136

// Each node has .value and .next
// head is the first node.

function enqueue(newValue)

 // Create the new node
 newNode = new Node()
 newNode.value = newValue
 newNode.next = null

 // Edge case: queue is currently empty
 if head == null then
 head = newNode
 return

 // Find the end of the list
 temp = head
 while temp.next != null do
 temp = temp.next

 // Add the new node after the last node
 temp.next = newNode

// Each node has .value and .next
// head is the first node.
// tail is the last node.

function enqueue(newValue)

 // Create the new node
 newNode = new Node()
 newNode.value = newValue
 newNode.next = null

 // Edge case: queue is currently empty
 if head == null then
 head = newNode
 tail = newNode
 return

 // Add the new node after tail
 tail.next = newNode
 tail = newNode

When searching for bugs, it can be helpful to consider everything that the code must accomplish.
In this case, the head (and tail) reference must be updated somewhere in these functions.
More specifically, when the queue is empty, the references will need to be updated.
● Dummy nodes can be used to reduce the number of edge cases in linked structures.

Data Structures & Advanced Programming 22Williams College CSCI 136

Pseudocode: Dequeuing in Linked List

Does the tail variable helps us dequeue faster? No.
Does it make the implementation more complicated? Yes, a little bit.

Linked list without tail

// Each node has .value and .next
// head is the first node.

function dequeue()

 // Error if the queue is empty
 if head == null then
 return error

 // Get the first value
 firstValue = head.value

 // Update the head
 head = head.next

 return firstValue

// Each node has .value and .next
// head is the first node.
// tail is the last node.

function dequeue()

 // Error if the queue is empty
 if head == null then
 return error

 // Get the first value
 firstValue = head.value

 // Update the head (and tail)
 head = head.next
 if head == null then
 tail = null

 return firstValue

Below is pseudocode for removing an element from a queue either using or not using tail.

Linked list with tail

Data Structures & Advanced Programming 23Williams College CSCI 136

Efficiency for Queue Operations in Linked List
The efficiency of the two main queue operations for our two linked list-based implementations.

What would the run-times be for doubly linked lists with head and tail? O(1)-time for both.
Using a singly linked list with a tail reference is optimal in terms of time and simplicity.

Big-O measurements for a queue containing n elements.

Linked List
(no tail)

Linked List
(with tail)

enqueue O(n)-time O(1)-time

dequeue O(1)-time O(1)-time

