CSCI136 1

e Lab4 — Preview
e Generalized Sorting
Lecture 13 ° Generics
o Comparators
Sorting lll e Midterm Review
o Problem 3
o Problem 4

Williams College Data Structures & Advanced Programming CSCI136 2

Lab 4 — Preview

Data Structures & Advanced Programming

Williams College

@ Dataset

Seattle Pet Licenses
Pet licenses issued by the Seattle Animal Shelter between 2005 and early 2017

- AaronSchlegel « updated 3 years ago (Version 2)

Data Tasks Code (¢ Discussion | Activity Metadata Download (5 MB) New Notebook

iz License Database: Open Database, Contents: © Original % Tags ¢
Authors

& Usability 71

Context

The city of Seattle makes available its database of pet licenses issued from 2005 to the beginning of 2017 as part of the city's ongoing Open Data Initiative. The data
is also obtainable from the Socrata Open Data Access (SODA) portal in either CSV or JSON formats. It is also made available here (unofficially, | have no official
affiliation with the city of Seattle or the Seattle Animal Shelter) to help spread awareness of the dataset and Seattle's Pet Licensing initiative.

Content

[«
ra
hd

Data Explorer
4.76 MB

< seattle_pet_licenses.csv (4.5 MB)

Seattle Pet Licenses in .csv (comma separated values) format.

Williams College

Data Structures & Advanced Programming

| ~/GitEvolene — -bash | SeattlePets.csv
ecember 18 2015,S5107948,Zen,Cat,Domestic Longhair,Mix, 98117

June 14 2016,S116503,Misty,Cat,Siberian,, 98117

June 16 2016,S116742,Frankie Lee Jones,Cat,Domestic Shorthair,,
August @04 2016,S119301,Lyra,Cat,Mix,, 98121

November 08 2016,73859,Minnie,Cat,Domestic Shorthair,, 98106

April 11 2017,133966,Charlie,Cat,Domestic Shorthair,,98102

June @6 2017,208553,Puck,Cat,Russian Blue,, 98107

June 10 2017,142312,Frankie,Cat,Domestic Shorthair,,98107
September 22 2017,730786,Pepper,Cat,Domestic Shorthair,, 98146
September 26 2017,273798,Cathol,Cat,Domestic Shorthair,, 98108
January 19 2018,895915,Emily,Cat,Domestic Medium Hair,, 98103
February 13 2018,964371,George,Cat,Domestic Shorthair,,98118
February 13 2018,964372,Jet,Cat,Domestic Shorthair,,98118
February 17 2018,S140000,Wilbur,Cat,Domestic Shorthair,,98103
March 20 2018,272327,Slightly,Cat,Manx,,98102

April 12 2018,S141564,Kevin Boots Ewing,Cat,Domestic Shorthair,Mix, 98125
April 17 2018,282510,Violet,Cat,Domestic Medium Hair,,b98144

April 20 2018,214982,Faith,Cat,Domestic Shorthair,, 98116

April 20 2018,214983,Tanner,Cat,Domestic Medium Hair,,98116

April 26 2018,S109975,Simon,Cat,American Shorthair,Siamese, 98126
May 02 2018,83448,North Star,Cat,Domestic Shorthair,Mix, 98133

May 16 2018,S126432,Chico,Cat,Domestic Shorthair,Mix, 98122

June 22 2018,964224,Hudson,Cat,Domestic Shorthair,,98118

July 10 2018,85322,Zen,Cat,Domestic Shorthair,Siamese, 98105

July 26 2018,S131486,Estrela,Cat,LaPerm,, 98103

August 13 2018,578368,Lucky,Cat,Oriental Shorthair,Mix, 98106
August 30 2018,129654,Daisy,Cat,Domestic Longhair,, 98144

August 30 2018,S121902,Buffy,Cat,Siamese,European Shorthair,98107
August 31 2018,S120217,Leeloo,Cat,Domestic Shorthair,,98102
August 31 2018,S120218,Zorg,Cat,Domestic Shorthair,, 98102
September 08 2018,8000753,Digger,Cat,Domestic Longhair,, 98133
September 12 2018,S103858,Piper,Cat,Domestic Shorthair,, 98144
September 16 2018,8000965,Gamzee,Cat,Maine Coon,Mix, 98103
September 16 2018,8000966,Nepeta,Cat,American Shorthair,Mix, 98103
October @8 2018,273248,Cloudy,Cat,Domestic Shorthair,,98122
October 21 2018,715838,Little Bear,Cat,Domestic Shorthair,, 98122
October 31 2018,S5126958,Bailey,Cat,Domestic Shorthair,,98119
November 18 2018,118752,Princess,Cat,Domestic Shorthair,,98103

SeattlePets.csvis part of Lab 4

CSCI136 4

Williams College Data Structures & Advanced Programming CSCI136 5

GNU nano 5.8

/ A simple class holding information about a pet.

import structure5.x;
import java.util.Scanner;
import java.io.x;

public class Pet
{

public Pet(Vector<String> description) {
}

public String licenseDate()
{

return "";

}

Pet.javais part of Lab 4

Williams College Data Structures & Advanced Programming CSCI136 6

GNU nano 5.8 InsertionSort.java
/ A stable sort - insertion sort - from the Java Structures text.
public static void insertionSort(int datall, int n)
// pre: @ <= n <= data.length
// post: values in data[@..n-1] are in ascending order
{
int numSorted = 1; // number of values in place
int index; // general index
while (numSorted < n) {
// take the first unsorted value
int temp = datalnumSorted];
// ...and insert it among the sorted:
for (index = numSorted; index > ©; index—-) {
if (temp < datalindex-11) {
datalindex] = datal[index-11];
} else {
break;
}
}
// reinsert value
datalindex] = temp;
numSorted++;
}
}

InsertionSort. java is part of Lab 4

Williams College Data Structures & Advanced Programming CSCI136 7

Generalized Sorting

Williams College Data Structures & Advanced Programming

Discussion: Generalized Sorting

When discussing sorting algorithms we have been focused on int arrays.

e How would we sort other common objects like String?
e How would we sort new objects like Pet?

How is this handled in Java? (Or how should it be handled in Java?)

o o ¥%

\J v,
. Omh aiEER

Think about this for 2 minutes.
Then discuss it with your neighbor for 3 minutes.

Is there only one way of sorting a given type of object?
e Provide five different ways of sorting St ring objects. Be creative!
e Provide five different ways of sorting Pet objects.

How is this handled in Java? (Or how should it be handled in Java?)

CSCI136 8

CSCI136 9

Generics, Comparables, Comparators, Lambdas

Williams College Data Structures & Advanced Programming

Activity: Generalized Sorting

Determine answers to the following questions to the best of your abilities:
e Whatis a generic?
e What is a comparable? What is a comparator?
e Whatis a lambda expression? (Also know as a lambda function.)

y |
|

Work with your neighbor for 5 minutes.

Relate what you have found to the previously discussed problems.
e How could you sort St ring objects in five different ways?
e How could you sort Pet objects in five different ways?

You will learn more about the precise mechanisms for doing these things in Java in Lab 4.

CSCI136 10

Williams College Data Structures & Advanced Programming CSCI 136 11

Midterm Review

Williams College Data Structures & Advanced Programming

Problem 3 [15 points]
Big-O and Counting.

a. A subsequence of charactacters found in a string, str, is any string that can be
constructed by possibly deleting characters from str. Two subsequences are distinct
if they are not equal. For example, there are 7 distinct subsequences of "eve":

"

un, "e", "V", "ev", "ee", "yve eve

" "
’

If str has length n, then what is the maximum number of distinct subsequences that it
can contain? What is the minimum number? Provide exact answers to these two
questions (e.g., the maximum is n*+1), as opposed to a big-O.

b. Our formal definition of big-O is below. Fill in the blanks. Also provide an intuitive
definition of big-O in your own words, making sure to address the role of ¢ and n,.

Formal definition:

c. Rank the following from smallest to largest. Provide your answer in the table below.
For example, O(1) is the smallest, so it is given rank 1, as indicated in the table. You
do not need to justify your answer to this question.

O(n) o(n%) 0(2") o(n%) O(1) O(n!) | O(logy(n)) | O(n")

1

d. Suppose that A is an int array of length n that is sorted from smallest to largest. How
quickly could you determine the number of distinct values in the array? For example, if
Ais {1,1,3,4,4} then it has three distinct values. Provide your answer in big-O
along with a brief justification.

e. The following function binary(n) takes a non-negative integer, n, and returns a
string that gives the base-2 (binary) representation of n. What is its run-time in big-O?

Definition 5.1 A function f(n) is O(g(n)) (read “order g” or “big-O of g”), if and
only if there exist two positive constants, ¢ and ny, such that

for all

Intuitive definition:

~

* Ok 2k 2k Ok F

*
Build a String with the binary representation of a number n.

@param number the number to represent in binary
@result a String whose characters are the binary digits of n
@pre
*/
public static String binary(int n) {
if (n < 2) return ""+n;
else
return binary(n/2)+(n%2);

Williams College

Data Structures & /

Problem 4 [20 points]

Debugging. A ternary search is similar to a binary search, except that the search space is
repeatedly divided into thirds instead of halves. You are trying to implement ternary search in
a function £ind which calls a recursive function £indr (see next page). The inputto £ind is
an int array A that is sorted from smallest to largest, and a target value t. If the target is in
A, then £ind should return an index with A[index] = t; otherwise, it should return null.

Good news: £ind is partially working! Bad news: It has some bugs. To debug your code,
you created an array A = {1,1,3,3,5,7,9,11,11} and tested £ind with all targets t
between 0 and 12, with results given in the table below, where « denotes infinite recursion.

targett| o ! 2 3 4 5 6 7 8 9 10 g | 12

expected|null|oor1|null2or3(null null 5 null| 6 |null|7org|null

4
received | null | null 3 null 4 null |null (null| o |null|null
v

v v 14 v v v x v x X X 4

Running find(t, A)onarrayA = {1,1,3,3,5,7,9,11,11} withtargetst = 0,1,..,12.
For example, when the targetis t = 5, the £ind function is correct in returning 4 since A[4] = 5.
Similarly, when the targetis t = 8, the £ind function is correct in returning null since A has no 8.

a. Your tests have identified some false negatives, including £ind(7,A) returning null.
You believe that these errors are being caused by the recursive calls in lines 34-46.
To test this hypothesis, consider the first level of recursion resulting from find(t,A),
where A is the test array given above. Depending on the target t, a recursive call will
be made on line 36, 40, or 44. Provide the missing arguments for these three calls in
the figure below. For example, line 36 calls £indr(t, A, left, middlel - 1),
s0 you should provide the values of 1left and middle1l - 1 in the space provided.
You may find it helpful to record intermediate values directly in the code. For example,
you may wish to write size = 9 online 17, since right-left+1 = 8-0+1 = 9.

find(t, A)

findr(t, A, 0, 8)

[

[findr(t, A, ,)] [findr(t, A, ,)] [findr(t, A, ,)]
line 36 line 40 line 44

Function calls resulting from testing find on arraya = {1,1,3,3,5,7,9,11,11}.
Depending on the target t, one of the three recursive calls on the bottom row will be called.
Fill in the missing 1eft and right arguments for each of these calls with specific values.

1ced Programming

b. Explain how the three recursive calls from part a. lead to false negatives in your tests.
Are there any other issues in lines 34-46 that would lead to false negatives?

c. Your tests have also identified infinite recursion, including £ind(9,A) running forever.
In general, what are some potential causes of infinite recursion in implementations of
binary search and ternary search?

d. You believe that your infinite recursion is caused by the base cases in lines 7-13
and/or the calculations in lines 23-25. Identify the issue. Note that your assertion on
line 26 is never triggered. Hint: Think about size1 and the recursive call in line 36.

Williams College

0000 WwN P

Data Structures & Advanced Programming

public static Integer find(int t, int A[]) {
return findr(t, A, 0, A.length - 1);
¥

protected static Integer findr(int t, int A[], int left, int right) {
// Base Case: There are no elements to search.
if (left > right) return null;

// Base Case: There is one element to search.
if (left == right) {

if (t == A[left]) return left;

else return null;

)

// Compute the size of the range A[left], ... ,A[right], and
// divide it into thirds, and account for any extra remaining.
int size = right - left + 1;

int third = size / 3; // Java rounds towards zero.

int extra = size % 3; // The remainder modulo 3.

// Split size into three parts, with the extra in the first part.
// Assert that the three smaller sizes sum to the overall size.
int sizel = third + extra;

int size2 = third;

int size3 = third;

Assert.condition(sizel+size2+size3 == size, "Wrong size sum");
// We will split A[left], ..., A[right] into three sub-ranges.
// Compute the two middle points.

int middlel = left + sizel;

int middle2 = left + sizel + size2;

// Search for the target value in one of the three sub-ranges.
if (t < A[middle1]) {

return findr(t, A, left, middlel - 1);
} else if (t < A[middle2]) {

return findr(t, A, middlel, middle2 - 1);
} else {

return findr(t, A, middle2, right - 1);

