
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 12
● Sorting in O(n log(n))-time

○ Merge Sort
○ Quick Sort
○ Heap Sort

● Comparison Based Sorts
● Bucket Sort

Sorting II

Note: log n and log(n) are used
interchangeably and both refer to

log2(n) unless otherwise specified.

Data Structures & Advanced Programming 2Williams College CSCI 136

Sorting Videos
Warning: Flashing Screen (especially for the first 8 seconds).

http://www.youtube.com/watch?v=kPRA0W1kECg

Data Structures & Advanced Programming 3Williams College CSCI 136

Retro Video Game Lab
Friday 11am – 12pm
Schow Library 014

entrance is near the bean bag chairs

What I Did Last Summer
Friday Colloquium

2:30pm – 4pm
Retrogame Archeology

Data Structures & Advanced Programming 4Williams College CSCI 136

Sorting in O(n log(n))-time

Where will the log(n)
come from?

Data Structures & Advanced Programming 5Williams College CSCI 136

Merge Sort

Data Structures & Advanced Programming 6Williams College CSCI 136

Merge Sort
Split the array into two halves. Sort each half recursively and merge them together.
● The base case is 1 element (or 2 elements shown below).

Some example steps of merge sort.

1 -5 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 1 4 6 -7 -3 4

Analysis of Merge Sort

● It runs in O(n log n)-time in the worst-case.
○ There are log n levels in the recursion and

each level takes a total of O(n)-time.
○ Illustration on the next slide.

● It is difficult to implement this in-place.
○ The merge step uses additional space.

● It is stable.
○ Why?

-7 -5 -3 1 4 4 6

https://en.wikipedia.org/wiki/Merge_sort

Data Structures & Advanced Programming 7Williams College CSCI 136

Merge sort on an array A, where each node is a recursive call with a range of indices to be sorted.
● We divide the range in half when going down, so the height of this tree is log(n).
● The merge step is O(k)-time where k is the number of values being merged.

Therefore, we need to sum all of the ranges to get the overall run-time.
● Notice that each layer contains each element of A exactly once.

So each layer requires a total of O(n)-time.
There are log(n) layers and each requires O(n)-time. Hence, the overall run-time is O(n log(n))-time.

A[0..15]

A[0..7] A[8..15]

A[0..3] A[4..7] A[8..11] A[12..15]

A[0..1] A[2..3] A[4..5] A[6..7] A[8..9] A[10..11] A[12..13] A[14..15]

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12] A[13] A[14] A[15]

Data Structures & Advanced Programming 8Williams College CSCI 136

Live Coding: MergeSort
Let’s implement merge sort!
● The function MergeSort(int[] A) modifies A.

It will call the recursive function MergeSortRec that does all the work.
● The function MergeSortRec will use the following arguments:

○ int A[] is the array.
○ int left and int right specify that A[left...right] is to be sorted by this recursive call.

Otherwise, we could copy subarrays during each recursive call, but this would be wasteful.
○ int temp[] will be used for temporary space during merging. It must have size at least A.length()=n.

This temporary space will be created by the MergeSort function.
○ Therefore, the signature is MergeSortRec(int[] A, int left, int right, int[] temp).

We also need to implement a helper function merge.
● Conceptually, its input is two sorted arrays, and it combines them into a single sorted array.
● In practice, merge sort on needs to merge two subarrays that are next to each other.

○ Thus, we can use merge(int[] A, int first, int mid, int last, int[] temp).
● It will merge the values into the temp array and then copy these values back to A.

Note: There are many different ways to implement merge sort.

Data Structures & Advanced Programming 9Williams College CSCI 136

Implementing MergeSort (and Merge) in the file Sorting.java.

Data Structures & Advanced Programming 10Williams College CSCI 136

Quick Sort

Data Structures & Advanced Programming 11Williams College CSCI 136

Quicksort
Pick a random pivot and separate the items based on being smaller or larger.
● Use up to 2 swaps to separate each item and recursively sort the two subarrays.

One pass of quicksort.
Notice that the last step swaps 6 with -3, and then -3 with 1.

1 -5 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 -7 1 6 4 4 -3

Analysis of Quicksort

● It runs in O(n log n)-time in average cases.
○ Why?

● It is O(n2)-time in the worst case.
○ When does this occur?

● One of the most efficient algorithms in practice.

● It is in-place.

● It is not stable.
-5 -7 1 6 4 4 -3

-5 -7 -3 1 4 4 6

Data Structures & Advanced Programming 12Williams College CSCI 136

Heap Sort
(preview)

Data Structures & Advanced Programming 13Williams College CSCI 136

Binary Heaps
A binary heap is a binary tree whose node values satisfy two rules:
1. The value of a node is less than or equal to the values of its children.
2. The binary tree is full meaning that all levels except the bottom are full and the bottom

level has all of the nodes as far to the left as is possible.

We’ll implement a binary heap with the following: where n is the number of nodes currently in the heap
(a) Insert a new value in log(n)-time. We preliminarily add it to the bottom and then fix the structure.
(b) Remove the minimum value in log(n)-time. Deleting the top element and fixing the structure.

How can we use these points as part of an O(n log(n))-time sorting algorithm?

Another binary heap with the same data.A binary heap.

1

7 4

8 9 5

1

4 5

9 8 7

Data Structures & Advanced Programming 14Williams College CSCI 136

Heap Sort
Add all n items into a heap and then remove the minimum one at a time.
● The result is very similar to selection sort.
● More generally, any priority queue can be used to sort in this way.

Note: We’ll discuss binary trees, binary heaps, and priority queues later in the course.

Heap sort is based on the creation of a heap.

1 -5 4 6 -7 4 -3 Analysis of Heap Sort

● It runs in O(n log n)-time in the worst-case.
○ Each insert takes O(log n)-time.
○ Each remove takes O(log n)-time.

● It is not in-place since we create a new array for
the heap.

● It is not stable.

-7

1 -5

4 6 -3 4

-7 -5 -3 1 4 4 6

Data Structures & Advanced Programming 15Williams College CSCI 136

Comparison Based Sorting

Data Structures & Advanced Programming 16Williams College CSCI 136

Sorting Limitations
We have provide several algorithms for sorting in O(n log n)-time.
Is this the best possible result?

All of these algorithms have been comparison-based meaning that they only use the relative
order of pairs of items via comparisons (<, ≤, =, ≥, >) to make decisions.

● The algorithms are focused on the relative order of the values, rather than any specific values.
○ For example, if you multiply every value by 10, then the algorithm works in exactly the same way.

This leads to two questions:
1. Is O(n log n)-time the best possible for a comparison-based sorting algorithm?
2. Are there sorting algorithms that are not comparison-based?

And could they run faster than O(n log n)-time?

Data Structures & Advanced Programming 17Williams College CSCI 136

Limitation of Comparison-Based Sorting Algorithms
A list of n distinct items has n! different permutations.
● Only one of the n! permutations is the correct sorted order. The algorithm must determine it.
● Each comparison x ? y divides the number of possibilities by two since x < y or x > y.
● log(n!) = log(1 · 2 ··· n) = log(1) + log(2) + ··· + log(n) ≤ log(n) + ··· + log(n) = n log(n)

by replacing each term with log(n).

The last point implies that shortest binary tree with n! leaves has height O(n log n).
Theorem: Any comparison-based sort requires Ω(n log n)-time in the worst-case.

One particular decision tree for sorting three elements.
Some paths are shorter than others. (Why?)

We can reorder the decisions, but we cannot make the longest paths any shorter.

x1 ? x2

x1 ? x3 x1 ? x3

x2 ? x3 x3 x1 x2 x2 x1 x3 x2 ? x3

x1 x2 x3 x1 x3 x2 x2 x3 x1 x3 x2 x1

<

<

< <

<

>

>

>>

>

Data Structures & Advanced Programming 18Williams College CSCI 136

Bucket Sort

Data Structures & Advanced Programming 19Williams College CSCI 136

Bucket Sort
Suppose that we know that the minimum value is ≥ m and the maximum value is ≤ M.
● We may know these bounds in advance, or we can determine them exactly in O(n)-time.

Let’s create an array of b = M - m + 1 “buckets” to hold each of the possible values.
1. Scan through the n values and put each value into its bucket. This takes O(n)-time.

Note: Multiple items can go in the same bucket by using frequencies or an array of linked lists.
2. Scan through the buckets and put the values into a sorted array. This takes O(b+n)-time.

This algorithm does not use comparisons and it runs in O(n+b)-time.
Notice that O(n+b)-time is equal to O(n)-time whenever b ≤ c · n for some constant c.
In other words, if b is O(n) (i.e., the range is at most proportional to the number of values),
then bucket sort is O(n)-time, which is faster than any comparison-based sorting algorithm.

Buckets when the minimum is m=1 and the maximum is M=5.

An int in Java has values in the range
-2147483648 to 2147483647, so b ≤ 232 is a constant.

Thus, bucket sorting int arrays is O(n)-time.
In practice, bucket sorting arbitrary int arrays

can be slow and use gigabytes of storage (which
is technically constant), but it is great for small b.

There are limitations to big-O analysis.

Data Structures & Advanced Programming 20Williams College CSCI 136

● Use library functions unless you have a special situation.
● Bucket sort is useful when we know there is a small range of possible values.
● Quicksort is usually the fastest in practice.
● Merge sort is an example of a divide-and-conquer algorithm.
● Heap sort is a data structure driven algorithm.
● Merge, Quick, Heap are asymptotically optimal in terms of total comparisons.
● Some of the above points require further explanation (e.g. Selection stability).

Summary on Sorting

Bubble Selection Merge Quick Heap Bucket

comparison? yes yes yes yes yes no

worst-case O(n2)-time O(n2)-time O(n log n)-time O(n2)-time O(n log n)-time O(n+b)-time

expected O(n2)-time O(n2)-time O(n log n)-time O(n log n)-time O(n log n)-time O(n+b)-time

in-place? yes yes no yes no no

stable? yes yes* yes no no yes

